T3 project: searching for comets in the asteroidal population

BAA comet-asteroid meeting, Open University, Milton Keynes – 2012, Oct. 6th

Luca Buzzi "G.V.Schiaparelli" Astronomical Observatory – Italy MPC 204

T3 project: the beginning

T3 project was born at the end of 2005 thanks to various contacts and collaborations mainly between Sergio Foglia and Gianluca Masi. It was officially presented during MACE 2006 in Vienna.

In 2007, a paper regarding this project appeared in the Minor Planet Bulletin no.34, edited by Richard Binzel and in "The Comet's Tale" (Newsletter of the Comet Section of the BAA) edited by Jonathan Shanklin.

T3 project: uses of the Tisserand parameter

Tisserand parameter was invented by Francois-Felix Tisserand in the second half of the 18th century when he was studying the 3-bodies problem. It is a dynamical value used to determine the encounter properties between a minor body (comet or asteroid) and a planet (Jupiter for example). When the orbit of an asteroid is altered due to the close encounter with a planet, Tisserand parameter is conserved during both the pre- and post-encounter. Tisserand parameter's formula is the following:

T3 project: Main-Belt Comets

A particular case is the Main-Belt Comets: they have orbits well inside the main belt and a Tisserand parameter > 3, low eccentricity and inclinations and so are dynamically indistinguishable from a normal asteroid.

133P/Elst-Pizarro	$T_{i} = 3.18$
176P/(118401) LINEAR	$T_{j} = 3.17$
238P/Read	$T_{j} = 3.15$
P/2008 R1 (Garradd)	Tj = 3.22
P/2010 A2 (LINEAR)*	Tj = 3.58
P/2010 R2 (La Sagra)	Tj = 3.10
(596) Scheila	Tj = 3.21
(300163) 2006 VW139	Tj = 3.20

P/2010 A2 (LINEAR) - 16/01/2010 - 20 min. - 0.60-m (MPC 204)

T3 project: list of targets

Thanks to Sergio Foglia, we developed a special software which, starting from MPCORB, creates our targets list, with some constraints like:

Tj < 3 (2.95) NO numberd objects MOIDj < 1 AU (no if Tj < 2.6) * Magnitude <= 20 Elongation > 30°

IGNATION	I ORDER:				perih	elion	Tiss	serand	or	opositio	ns		Orbital fraction respect to perihelion a								
Minor Pl no r	lanet name	Design	code	flag	NEO Prob	Tper year mo	o day	Тј	Opp	a	e	i	R.A.2000 hh mm.mm	Dec1.2000 dd pp.p	Delta A.U.	r A.U.	Mag V	Elong	(t-T)/P	r/q k	JMoid
	2000 AU242	KODAO2U	1000		0.00	2011	1 12	2.74	6	4.814	0.488	9.5	5 54.06	+12 2.4	2.747	3.439	19.4	127.6E	-0.192	1.40 !	0.360
	2000 EJ37	KOOE37J	0006		0.00	2011	3 8	2.44	2	4.685	0.703	10.2	11 53.04	- 2 27.1	3.162	3.973	19.7	140.5W	-0.230	2.86	0.580
	2000 YH138	KOOYD8H	1000		0.00	2008	8 6	2.92	5	3.960	0.342	11.5	11 13.43	+11 38.6	3.012	3.926	19.8	154.5W	0.381	1.51 !	0.959
	2002 EV71	KO2E71V	0000		0.00	2010	4 18	2.91	4	4.276	0.313	11.0	6 39.64	+36 34.4	2.166	2.961	19.4	136.5E	-0.044	1.01 !	0.037
	2002 FA9	KO2FO9A	2000		0.00	2010	3 22	2.95	1	4.005	0.314	8.9	11 56.30	- 7 44.8	1.953	2.759	18.8	137.2W	-0.029	1.00 !	0.044
	2003 BU35	K03B35U	0000		0.00	2010	3 24	2.77	2	3.742	0.537	14.9	4 7.49	+16 53.3	1.279	1.783	19.6	103.1E	-0.032	1.03 !	0.195
	2006 KD1	K06K01D	0003		0.00	2010	2 24	2.83	2	2.482	0.785	30.7	0 7.41	-26 29.6	0.698	0.619	18.9	38.5E	-0.017	1.16 !	0.968
	2006 KZ112	KO6KB2Z	0003		0.00	2010	4 4	2.57	2	2.524	0.887	37.8	0 15.73	-18 7.8	1.831	1.246	19.8	39.9E	-0.059	4.38	0.253
	2008 UD253	KOSUP3D	0000		0.00	2008	12 14	2.72	4	4.736	0.485	13.7	8 35.67	+37 25.1	2.874	3.788	20.0	154.4E	0.244	1.55 !	0.867
	2008 YB3	KOSYO3B	000A		0.00	2011	3 1	-0.25	2	11.652	0.443	105.1	7 42.04	-41 10.4	6.181	6.711	18.0	118.7E	-0.091	1.04 !	1.510
	2009 UV18	K09U18V	0004	2	0.00	2010	1 18	2.84	2	3.177	0.633	8.3	15 13.95	- 1 16.3	0.622	1.198	17.2	93.5W	0.018	1.03 !	0.601
	2009 W06	K09W060	0004		0.00	2010	2 22	2.78	1	3.089	0.580	28.7	2 27.94	+27 21.7	0.972	1.306	19.6	83.7E	-0.012	1.01 !	0.870
	2010 AB76	K10A76B	0000		0.00	2009	11 30	2.87	1	3.137	0.336	34.4	9 29.03	+29 44.4	1.172	2.140	18.5	165.1E	0.062	1.03 !	0.958
	2010 BC3	K10B03C	0004		0.00	2010	2 11	2.84	1	3.135	0.649	4.8	13 53.37	- 0 20.9	0.237	1.102	19.3	113.1W	-0.002	1.00 !	0.007

```
There are over a thousand asteroids with Tj<3 (650 with Tj<2.95 and Jupiter MOID < 1 AU). Those observable with elongation and magnitude constraints listed above are around 30.
```

T3 project: observing strategy

One of our first collaborations was with Raoul Behrend, University of Geneva, who maintains our internal mailinglist, where all the participant receive usually twice a month our targets list. When an observer chooses a candidate, he can observe it like any other asteroid, but he must keep in mind a couple of things:

1) It is strongly suggested to use nights with good seeing for his/her location

2) Don't lack in exposure time: the more SNR the better!

3) Images must be normalised (dark-subtraction & flat field calibration) and stacked on the motion of the asteroid

And the work is done! (almost...)

F1A002 - 23-01-2010 h. 21.30 UT - 50x30sec - 0.38-m f/6.8 + ST8XME

More in detail:

F1A002 - 23-01-2010 h. 21.30 UT - 50x30sec - 0.38-m f/6.8 + ST8XME

More in detail:

F1A002 - 23-01-2010 h. 21.30 UT - 50x30sec - 0.38-m f/6.8 + ST8XME

T3 project: latest results

Sine the end of 2005 our project had many successes, following are the most recent ones:

P/2010 UH55 (Spacewatch) - CBET 2923 - 2011, Nov. 30 C/2011 UF305 (LINEAR) - CBET 2960 - 2011, Dec. 29 P/2011 FR143 (Lemmon) - CBET 3082 - 2012, Apr. 13 C/2011 KP36 (Spacewatch) - CBET 3109 - 2012, May 17

T3 project: collaborations

Results are possible only with collaborations, so in years we created an international network of astronomical observatories:

Results are possible only with collaborations, so in years we created an international network of astronomical observatories:

Faulkes Telescopes (P.Roche, R.Miles, P.Miller et al.)

TRAPPIST – La Silla (E. Jehin et al.)

T3 project: using Faulkes telescopes

We are also developing a special method for Faulkes observations, because FWHM method is not so efficient with such an overestimated scale...

2011 YU62 – 2012, Jun. 07 – 60sec – FTN – 0.3"/pixel

T3 project: searching for comets in the asteroidal population

Ehi! Where are you?

T3 project is open to all! If you're interested, please contact me or Sergio Foglia:

lucabuzzi.204@gmail.com

s.foglia@libero.it