JUPITER IN 2005 AND 2006
John Rogers \& Gianluigi Adamoli,
using results from the JUPOS team (Hans-Joerg Mettig, Gianluigi Adamoli, Michel Jacquesson, Marco Vedovato, Grischa Hahn)

IV. NORTHERN HEMISPHERE

V. IMAGES OF THE GALILEAN MOONS, 2006

FIGURES 32-47
CHARTS J10-J15
TABLES 7-8

FIGURE LEGENDS \& MINIATURES (continued)

IV. NORTHERN HEMISPHERE

ZDP for NEB, 2005 \& 2006

Fig.32: ZDP for NEB and NTropZ, 2005 and 2006.

Fig.33: NEBn, 2006: Origin of barges B9 \& B10.
(A) Images showing WSZ and its 'wake' with the incipient barges enclosed in an ellipse (B9) and a box (B10).

(B) Enlargement from the JUPOS chart: longitude vs time. Barges B9 and B10 arise near the f. end of the retrograding 'wake' f. white spot Z. Note how B10 is seen first as a dark spot retrograding between two white spots in the 'wake', and then as a succession of similar dark spots at the same longitude, eventually stabilising as the barge.
(C) Latitude vs time for incipient barge B10 and the preceding white spots, aligned with (B).

Fig.34: NEBn, 2005: Merger of two barges. (The pair before merger are shown in Fig.13.) [A version of this compilation was published in Ref.11, and Peach made an animation of the merger from his images.]
Collision of white ovals Y and Z on NEBr
2006 June-July: Speed vs latitude 2006 June-July: Speed vs latitude

	2006	DL2	Lat.	SD	N
WSY	March-May	-6.3	19.1	0.54	78
	June	-3.6	18.8	0.51	49
(conjunction June 27-29)					
WSZ	Feb-M ay	-18.6	19.6	0.39	87
	June 1-24	-12	19.5	0.41	43
	June 25-29	-33	20.1	0.55	13
	July 1-6	-20	19.8	0.67	6
	July 13-30	-24	19.4	0.40	19
(WSZ, July 6-13, appeared multiple)					
WSY'	June 29, July		18.2	0.47	3

Fig.35: NEBn, 2006 June-July: Collision of white ovals Y and Z.
(A) Speed and latitude of each AWO are tabulated and plotted, showing that both ovals obeyed a typical ZDP during the encounter.
(B) Images of the event. [A fuller image set was posted in Ref. 5 no.10.] (Also see Fig.23). The images also show recirculation of small dark spot(s) from NTBn to the NNTBs jet. Dark spots in the NNTBs (N2) jet are marked in blue.
The aftermath of the encounter was not well observed, because in the first 3 weeks of July, the Australian observers were all clouded out, while the Philippines were ravaged by 3 typhoons. However, occasional hi-res images showed WS-Z double on July 1-6, and triple on July 11.

Fig.36: NEBn, 2006 Sep: Convergence of white ovals U and Z. The event proceeded as in the previous figure up to Sep.13, when the ovals were unresolved in contact, but no hi-res images were obtained in subsequent days.

Two dark spots recirculating from NTBn jet to NNTBs jet
(A) JUPOS chart

Fig.37: Charts of the two small dark spots recirculating from NTBn jet to NNTBs jet, 2006. (A) Enlargement from JUPOS chart, dark spots, colour-coded by latitude.
(B) ZDP for the recirculating spots. (For spot 1, this shows overlapping track segments independently analysed by G.A. and J.H.R.)

NNTBs jetstream spots, 2005 \& 2006

Fig.38: ZDP for N2 (NNTBs) jet spots. Larger symbols in 2006 are for groups of spots.

Fig.39: Hi-res images of the major features in the N2 (N.N.Temperate) domain, and spots further north, 2006 April. Two examples of N2 (NNTBs) jet spots are arrowed.
(Also see Figs. 8 \& 14 for NN-LRS-1.)
(Left) In the N 2 domain, the region of origin of the retrograding spots at 40 deg.N; there appears to be a 'folded filamentary region' (FFR) here, only just resolved, abutting WS-4. Just N of WS-4 is a small AWO prograding in the $\mathrm{N}^{3} \mathrm{TC}$ (not well tracked, but similar to later spots with DL2 ~-22 at $46^{\circ} \mathrm{N}$). Just N of that is a small AWO retrograding in the $\mathrm{N}^{4} \mathrm{TC}$.
(Right) The fawn-coloured NTZ contains vague grey wisps, and a chain of 6 N 2 jet spots is prograding on its N edge. In the N2 domain, the two Little Red Spots. Alongside them there is much turbulence in the NNTB latitudes.

NNTZ ovals in 2006

Fig.40: The long-lived NNTZ ovals in 2006: (Left) Colour and methane-band images; (Right), hi-res colour images. [This was Fig.S4 from Ref.14] . Note that LRS-3 is visibly methane-bright in spite of its small size; WS-5, about the same size, is not methane-bright.

ZDP for N2 and N3 domains, 2006

Fig.41: ZDP for N2 and N3 domains, 2006. Inset: ZDP for N3 domain in 2005 and 2007, superimposed on the 2006 chart.

Fig.42: Global ZDP. The ZWP from Cassini [Ref.33] is shown for comparison.

Fig.43: Transits of Io on its shadow near opposition in 2006 (and one of Europa). (For the same in 2005, see Fig.4).

Fig.44: Transit of Ganymede's shadow over Jupiter's north polar region on 2006 April 12. The oblique dark band on Ganymede is the dark areas, Marius Regio and Galileo Regio (Fig.46).

Fig.45: Transits of Ganymede over Jupiter's north polar region on 2006 April 19 and 26.

Fig.47: Some more shadow phenomena of the satellites: (A) Io appearing as a crescent in transit due to the phase (Dickinson);
(B) Double shadow transit with Io (Salway);
(C) Ganymede bisected as it enters eclipse (Peach).

Chart J11

N. Tropical Current (Lats. $+15 /+18 /+21$)

Chart J12

NNTBs jetstream outbreak Lats. $+34 /+37 \quad L^{\prime}=\mathrm{L} 2-2.5 \% / \mathrm{d}$

Chart J13

Chart J14

$\mathrm{N}^{3} \mathrm{TC} \quad$ (Lats. $444+47$)

Chart J15

N4 domain ($\mathrm{N}^{4} \mathrm{TC}$) (Lats. $+50 /+54$, etc.)

