JUPITER IN 2005 AND 2006

John H. Rogers \& Gianluigi Adamoli,
using results from the JUPOS team (Hans-Joerg Mettig, Gianluigi Adamoli, Michel Jacquesson, Marco Vedovato, Grischa Hahn)

I. INTRODUCTION

II. SOUTHERN HEMISPHERE

FIGURES 1-22
CHARTS J1-J7
TABLES 1-4

South is up in all figures unless otherwise stated (Fig.2).

Fig. 1: Occultation of Jupiter by the Moon (South polar region), 2004 Dec.7: image sequence by Don Parker, taken with 254-mm Mewlon telescope.
South is up. Brightness was adjusted separately for Jupiter and the Moon.

Fig. 2: Occultation of Jupiter by the Moon (North polar region), 2005 Feb.27: image sequence by Maurice Valimberti. North is up (unlike other figures). Brightness was adjusted separately for Jupiter and the Moon.

Fig. 3: Images all around the planet in 2004 Nov-Dec., at the start of the 2004/05 apparition. Some major features are indicated, including dark formations A1-A6 on NEBs.

Fig.4: Images around the planet on 2005 April 3-5. (Compare with Peach's map a few weeks later in Fig.5.) Major features are labelled on some images, including the AWOs in the S 2 domain, oval Q in the S . Tropical domain, and barges and AWOs in the N.Tropical domain. As opposition was on April 3, these images include two transits of Io in front of its shadow, and one transit of Ganymede adjacent to its shadow.

Fig.5: Map of the planet prepared by Damian Peach from his own images in 2005 April, with labels added for the major features.

Fig.6: Map of the planet prepared by Damian Peach from his own images in 2006 April, with labels added for the major features.

Fig.7: Images of Jupiter in the $889-\mathrm{nm}$ methane band, 2005. (See figure for caption.)

Fig.8: Multispectral image sets in 2006 by several observers, including ultraviolet, methane band, and near-infrared continuum, with visible colour (RGB) images for comparison.

Fig.9: Multispectral image sets in 2006 by Tomio Akutsu, including ultraviolet, methane band, and near-infrared continuum, with visible colour (RGB) images for comparison.

Fig.10. Charts of long-lived AWOs in south polar region, 2006. (A) S4-AWO-A, showing regular, synchronous oscillations in longitude and latitude vs time. (B,C) ZDPs for both S4 AWOs and for S3-AWO-1, showing both fast and slow phases of their oscillations. These ZDPs are for 2006 only; in our long-term report [Ref.6] we showed ZDPs for all years.

Fig.11. Images showing the approach and merger of two white spots in the S4 domain. After an alert by H-J. Mettig, the two were tracked up to April 10 , and were apparently merging in the nearsimultaneous images by Tyler and Lazzarotti on April 13, but no details of the merger were visible. Also note the S.Trop.Band emerging p. the GRS, with Oval Q due N of the merging S4 spots.

Fig.12. Images including Oval BA and surroundings, 2004/05.

Fig.13. Images including Oval BA and surroundings, 2005 April, at high resolution by Peach.

Fig.14. Images of longitudes from Oval BA to the GRS, 2005 April-May, at high resolution by Peach. Oval Q and white spot Z are also well shown.

STropZ, 2006: Dark spots recirculating
S2-AWOs and STropZ dark spots are labelled. The STB Remnant is alongside spots $a \& b$.
[Some of these images were used in our 2006 interim report no, 11 (Fig.16) showing breakup of SSTB cyc.WO's.]

June 10: Larry Owens
IrRGB 03:45UT

Fig.15. Images of the S. hemisphere in 2006 June, showing the ovals in the S2 domain, and dark spots a - f in the STropZ, some of which recirculate. The STB Remnant is alongside spots a and b.

Fig.16. Images including the GRS and oval BA in 2006 April-June. See image for caption. [Some images were shown in Ref.4].

Fig.17. Images including the GRS with oval BA passing it in 2006 July-August. [Previously posted in Ref. 5 no.9.] This shows: Internal circulation of GRS [Ref.8]; SED passing GRS; \& bright spot(s) in the southern NEB (red arrows) breaking through into the EZ(N) at the p. edge of dark projection \mathbf{k} on July 10. See caption on image for further details.

Jupiter, 2005 April 21 -- May 7:

This set shows spots on SEBs, STBn, SSTB, and S3TBn.

Fig.18. Images in 2005 April-May showing the STB Remnant and spots moving in the S3 jet, SSTB, S1 jet (STBn jetstream), and STropZ.

Fig.19. The GRS in 2005 May, with spots moving rapidly around and inside it.
Inset: Chart of position angle vs time for the dark grey streak in the GRS (red arrowhead on the images), measured by JHR on images stretched to circularise the GRS, as in [Ref.8]. The trailing end had a period of 4.7 days; the leading end was less well defined but was consistent with the same period.

Fig.20. (A,B) ZDPs for STropZ and SEB: (A) 2005, (B) 2006.
(C,D) ZDPs for STropZ and SEBs jet in other years for comparison: (C) 2007, (D) averages for apparitions 1999-2002 and for historic BAA data, plus the typical position of SEBs jet vortices in Cassini data. [Charts (C, D) were previously posted in Ref.23. The line is the ZWP from Cassini [Ref.33], for comparison.]

Fig.21. Images in 2004/05 showing how a dark red-brown barge in SEB shrinks as a white spot develops on its N edge. Three white spots at this latitude were probably appendages to inconspicuous cyclonic circulations at the 'barge' latitude (as also a much larger one in 2011-2014).

Fig.22. Images in 2005 April-May, showing a new extension of the post-GRS disturbance in the SEB, which started on April 21.

Chart J1

S4 \& S3 domains (long-lived AWOs), 2005-2006

Chart J2
S3 jet (Lats.-45/-42)
$L^{\prime}=\mathrm{L} 2-3.0 \% / \mathrm{d}$
Examples of jetstream spot tracks are indicated

Chart J3

S2 domain (SSTC) (Lats.-42/-39-37)
L' = L2 -1.00/d

Chart J4

Chart J5

Chart J6
STropZ (Lats.-24/-21)

Chart J7
SEB (south half: mini-barges) (Lats.-18/-15)

Table 1 (cont.)

Visual observations are not included in this report but the following observers are acknowledged:
Visual observers who contributed CM transits directly to the JUPOS team:

Adamoli, Gianluigi	Italy		Visual observers in UK:	
Chiarini, Massimo	Italy			
Cicognani, Massimo	Italy			
Colombo, Emilio	Italy			
Gaherty, Geoff	Canada		McKim, Richard	
Giuntoli, Massimo	Italy		Parish, Peter	
Horikawa, Kuniaki	Japan			
Mosch, Joerg	Germany			
Siliprandi, Paolo	Italy			
Vollmann, Wolfgang	Austria			

Latitudes of belts \& edges, 2006
Table 2
(Zenographic; measurements by JHR)

I. Sector p. GRS

			Sectort GRS \& BA		
	Mean	SD		Mean	SD
SPRn	-53.1	0.52	SPRn	-53.3	0.47
S2-AWOs	-40.9	0.19			
SSTBn	-34.6	0.21	STB(S)s	-34.8	0.43
STropB	-24.5	0.25	STBs (main)	-31.7	0.48
SEB(SS)	-21.2	0.13	STBn	-28.9	0.25
SEB(S)s	-19.9	0.16	SEBs (exc.dk.strks.)	-20.8	0.50
SEBn [irreg.]	-7.8	0.02	SEBn (exc. SED)	-7.7	0.89
EBs	-4.0	0.38			
NEBs [irreg.]	8.9	0.60	NEBs [irreg.]		
NEBn	20.2	0.49	NEBn	20.6	0.13
NEBn-AWOs	18.5	0.26	NEBn-AWOs	19.0	0.15
NTropB	23.2	0.42	NTropB	23.6	0.30
NPRs/N2-jet-ss.	34.4	0.23	NPRs/N2-jet-ss.	34.6	0.18
			NPRs	42.6	0.33
Measured 4 images:			Measured 4 images:		
April 14 \& 19 (Peach),			March 21 (Buda), April 12 (Peach),		
May 8 (Turner), \& May 27 (Olivetti).			May 26 (Valimberti), \& May 28 (Go).		

2006 longitudes and drifts			S. hemisphere		DL2 (deg/30d)	Dates	
Current	Description	Spot n .	Lat.	L2(0) (May 4)			Notes
S4TC	AWO	AWO-A	-58.6 to -60.0	223	+4 to -33	Feb-Aug	Oscillating, $\mathrm{P}=4.3 \mathrm{mth}$
	AWO	AWO-B	-59.2 to -60.2	119	+1 to -31	Mar-Jul	Oscillating, $\mathrm{P}=1.7 \mathrm{mth}$
S3TC	AWO	ws	-50.2 to -51.3	133	0 to -40	Mar-Jul	Oscillating, $P=1.0 \mathrm{mth}$; D.s. 13 deg.f.
	slow d.ss.	mean	-49.0	0-50	+10 to +15	($\mathrm{N}=6$)	Slow-moving chain
	d. spot	d.s. 1	-46.1	64 (July 1)	-25	May - Aug	Decelerating
	d. spot	d.s. 2	-46.5 to -46.0	98 (July 1)	-14 to -23	May-Jul	On N . edge of AWO; eventually accelerating
S3 jet	dark spots	mean	-43.0		-97	($\mathrm{N} \geq 8$)	Range DL2-96 to -99
	white spots	mean	-43.5		-97	($\mathrm{n} \geq 6$)	Range DL2-93 to -99
SSTC	AWO	A0	-40.6	269	-28	Feb-Aug	
	w. Cycl. area	C1	-39.0	283	-25	Jan-Jun	
	AWO	A1	-40.6	315	-33 to -26	Jan-Sep	
	AWO	A2	-40.4	346	-31 to -24	Feb-Aug	
	p. end w. Cycl. area	C2	-39.1	359	-27	Dec-Jul	
	f. end w. Cycl. area		-38.7	20	-26	Dec-Jul	
	AWO	A3	-40.6	24	-27	Feb-Sep	
	AWO	A4	-40.5	46	-22 to -32	Feb-Sep	
	p. end w. Cycl. area	C3	-39.2	50	-28	Feb-Jul	
	f. end w. Cycl. area		-38.7	69	-27	Dec-Jul	
	AWO	A5	-40.5	74	-27	Feb-Sep	
	AWO	A6	-40.5	105	-23 to -27	Feb-Aug	Newly formed
	w. Cycl. area	C4	-39.0 to (-37.9)	125	-22 to -32	Dec-Sep	
	AWO?		-40.4 to -40.9	131	-19 to -27	Mar-Aug	Minor oval; oscillating
	p. end w. area		(-40.1)	135	-14	Mar-Apr	Near to C4 and lesser anticycl. oval;
	f. end w. area		(-40.1)	162	-6	Mar-Apr	closest feature to retrogr. jet
	AWO	A8	-40.6	240	-27	Feb-Sep	
	AWOs	mean	[-40.5]		-27.3 ($\pm 3.4)$	($\mathrm{N}=9$)	Assumed lat. -40.5
	Cyclonic WOs	mean	-39.0 ($\pm 0.2)$		$-26.7(\pm 3.0)$	($\mathrm{N}=4$)	
	slow d.ss.	mean	-40.6 (± 0.2)		-20.7 ($\pm 3.0)$	($\mathrm{N}=7$)	Most tracks poorly defined
S2 jet	SSTBn d.ss.	mean	$-35.2(\pm 0.1)$		-64.8 ($\pm 2.3)$	($\mathrm{N}=3$)	
STC	Red anticyc.oval	BA	-32.8	143	-13.3 to -15.7	Dec-Sep	
	Small AWO		-33.7	181	-9 to -18	Feb-Sep	Oscillating, $\mathrm{P}=4 \mathrm{mth}$
	f. end d. sect. STB		-31.0	213	-15	Dec-Sep	
	d. spot		-30.2 to -30.9	275	-24 to -15	Jan-Sep	
	w. oval		-33.6	290	-13	Apr-Jun	
	p. end of STB Remnan		(-29.7)	330	-18	Mar-Aug	
	f. end of STB Remnan		(-32.7)	350	-17	Mar-Aug	
		mean	(-30 to -34)		-15.9 ($\pm 3.9)$	($\mathrm{N}=7$)	
	Slow sector (STB tail):						
	D.ss. (retrograding)		$-32.2(\pm 0.4)$		+30.2 (± 7.2)	($\mathrm{N}=12$)	[Average includes short-duration tracks].
					(Range: 441 to +17)		
	D.ss.(approx.stat.)		-32.8 ($\pm 0.3)$		+6.5 ($\pm 0.9)$	($\mathrm{N}=6$)	Some of these spots also had short faster track
					(Range: + 8 to +6)		segments of ~-3 to $-15 \mathrm{deg} / \mathrm{mth}$.
S1 jet	D.ss.	mean	-28.4		-87	($\mathrm{N}=8$)	
(STBn)			(Range: - 27,5 to -28,9)		(Range:-75 to -103)		
	P. end S.Trop.Band:		-24.1	52	-26	Mar-Apr	Other temp. p. ends in intervening months with
			-25.4	(164)	-67	Jul 2-27	intermediate drits \& lats. are not listed here.
GRS	Oval		-22.2	111	+0.6	Dec-Oct	Oscillation ($\mathrm{P}=90 \mathrm{~d}$)
STropC	d. proj	F1	-23.3	152	6.2	Feb 20 - Apr 29	
	d. spot	F2	-23.5	152	-3.1	May 2 - Jul 10	
	d. spot	G	-22,5 to -24,5	162	0 to -51	May-Jun	Accel. from ~ 0 to -51; passed spot F in June
	d. spot	A1	-23.0	197	7	Feb-Jun	
	d. spot	B	-22.9	330	8	Apr-Jun	Progressively acceler. from $\sim+15$ to - 16
	d. spot	E2	-22.6	66	21	Apr-May	
	AWO	Q	-22.6	80	+9 to -6	Jan-Aug	
	f. end STropB		-24.4	68 (Jun 26)	-8	Jun-Jul	
SEBS jet	dark projs. or spots	Group 1	-21.1 ($\pm 0.10)$		+52.7 (55.4)	($\mathrm{n}=4$)	
		(b,g,h,i)			(Range: 4 + to + +8)		
	dark projs. or spots	Group 2	-22.1 (± 0.24)		+29.2 (± 3.7)	($\mathrm{n}=6$)	
		including:			(Range: +23 to +32)		
	d. proj.	a	-21.7	272	32	May-Jun	Then recirc. in STropZ, up to lat. -23.9, DL2 -19
	d. proj.	c	-22.0	353	32	May-Jun	Then recirc. in STropZ, up to lat. -24.3, DL2-30
	d. proj.	d	-22.4	7	23	May-Jun	
	d. proj.	h	-22.1	190 (Jul 1)	31	Jul-Aug	Then decel. in STropZ, still lat. -22.3, DL2 +9.5
mid-SEB							
	d. spot	0	-16.7	319	9	May-Jun	
	mini-barge	1	-16.5	338	1	Mar-Sep	
	mini-barge	2a,b, c	-16.6	11	+5 to +17	Mar-Aug	
		2 d	-15.6		1	Aug 22 - Sep 1	
	mini-barge	32	-16.6	79.5	10.2	May 26 - Jun 23	
		3b	-15.8	(124)	-14.9	Jun 26 - Aug 5	
	mini-barges	mean	-16.3 ($\pm 0.47)$		+4.1 ($\pm 10.0)$	($\mathrm{N}=4$)	
mid-SEB	d. spot	4	-15.4	257	-24 to -33	May-Aug	Fast spot p. f.end mid-SEB outbreak
SEB(N)	w. spots	mean	-11.8		-83	($\mathrm{N}=31$)	
			Range: - 10.7 to - 13.6		Range:-52 to-108		
	d. spots	mean	-12.3		-91	($\mathrm{N}=6$)	
			Range:-11.4 to - 13.7		Range:-79 to -107		
Notes:							
These tables list large or long-lived or interesting spots, and means for recognised groups of spots and currents.							
Some minor features are not included, but all are plotted on the global ZDP chart.							
D.s(s), dark spot(s); W.s(s)., white spot(s).							
$\mathrm{L} 2(\mathrm{O})=\mathrm{L} 2$ on opposition (2006 May 4), unless other date is stated.							
Means are quoted ($+/-\mathrm{SD}$), and (N) is the number of spots averaged; sometimes the Where values for several individual spots are boxed, their average is given below.					number of track se	gments was larg	

