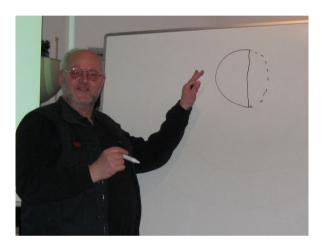
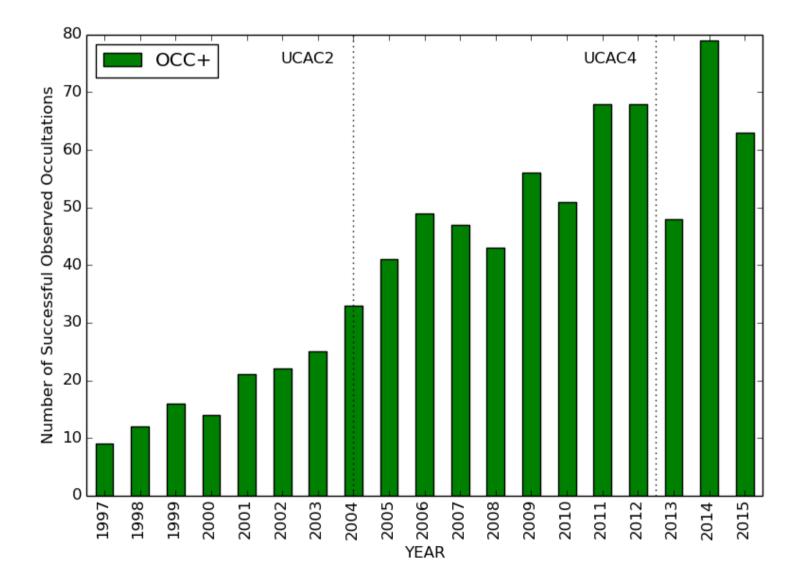
On the Uncertainty of Asteroidal Occultation Predictions in the (Pre-) Gaia Era

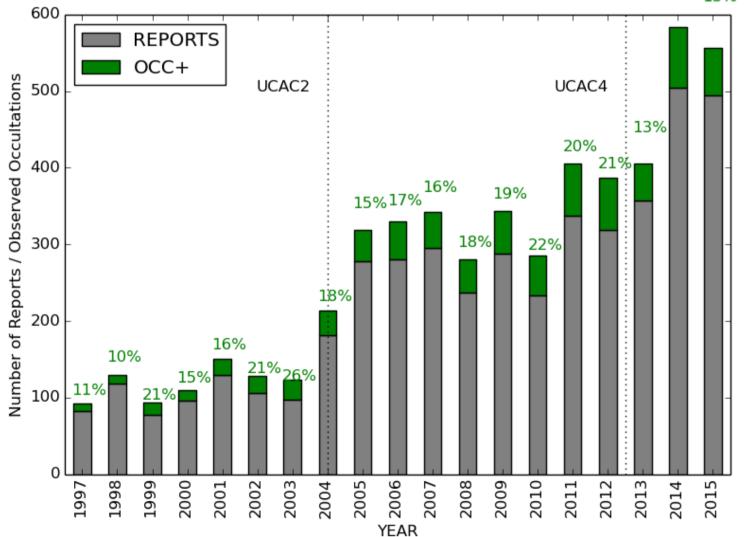

Mike Kretlow, Germany

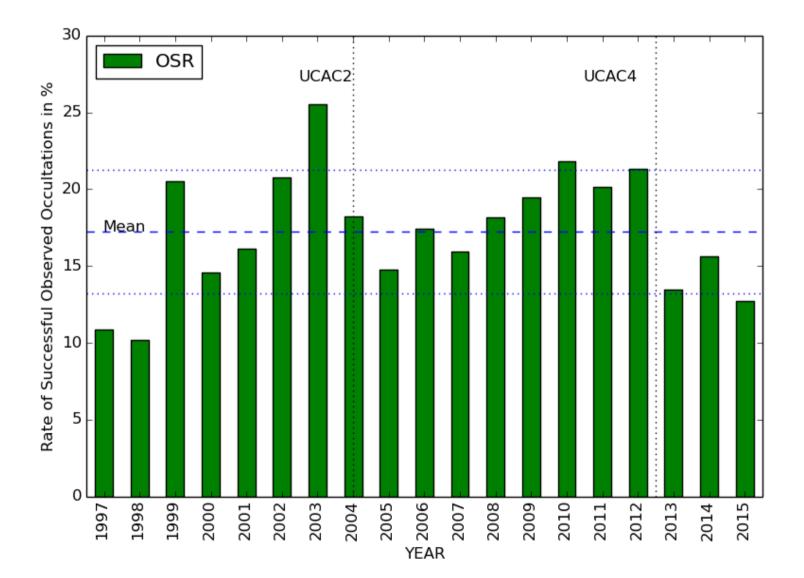
ESOP XXV, Guilford, UK August 19-23, 2016

In Memoriam


Alfons Gabel 1952 – 2016

Ottó Faragó 1960 – 2016


Occultation Success Rate


3 / 28

Occultation Success Rate

13%

Occultation Success Rate

OCC+ rate for individuals (http://occult.kretlow.de/occrep/)

Asteroidal Occultation Reports Database

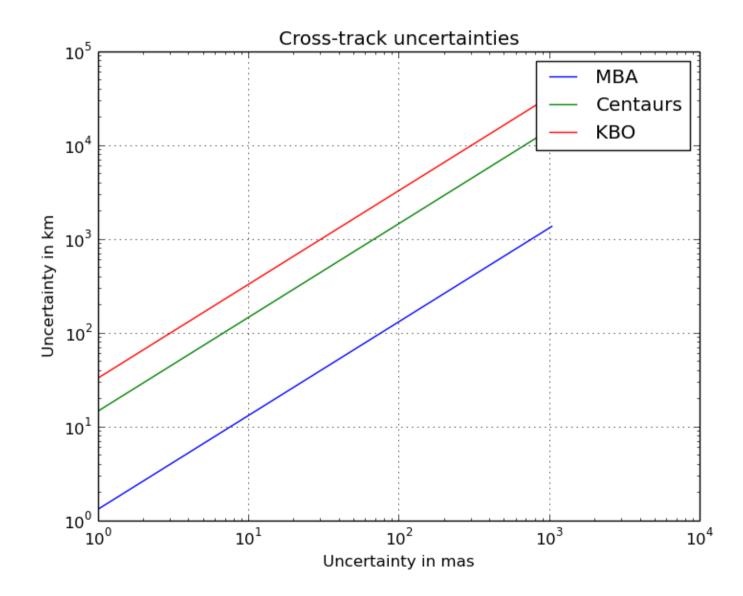
Home (Observations) | Results and Lists | Informations and Credits | Home (Predictions) | Top (Mike Kretlow)

Results | Incomplete Reports | LC Candidates | Observers Activity Report | Annual Statistics | Star Catalog Statistics | Top-20 List

Top 20 List

Rank	Object (total)	Object (O+)	Observer (total)	Observer (O+)	Country (total)	Country (O+)
1	(472) Roma (233)	(345) Tercidina (78)	E. Frappa/A. Klotz (1081 ISR = 8%)	E. Frappa/A. Klotz (85 ISR = 8%)	FR (2945)	FR (468)
2	(420) Bertholda (147)	(420) Bertholda (77)	Stefano Sposetti (437 ISR = 10%)	Jean Lecacheux (53 ISR = 20%)	ES (1737)	DE (297)
3	(345) Tercidina (100)	(472) Roma (59)	Gerhard Dangl (351 ISR = 9%)	Stefano Sposetti (45 ISR = 10%)	DE (1399)	ES (270)
4	(925) Alphonsina (89)	(U III) Titania <mark>(</mark> 55)	Carles Schnabel (340 ISR = 11%)	Carles Schnabel (37 ISR = 11%)	UK (891)	IT (151)
5	(41) Daphne (82)	(41) Daphne (43)	Jean Lecacheux (267 ISR = 20%)	Joan Rovira (35 ISR = 29%)	IT (801)	CZ (140)
6	(39) Laetitia (71)	(216) Kleopatra (40)	C. Perello/A. Selva (242 ISR = 10%)	Gerhard Dangl (32 ISR = 9%)	CZ (800)	CH (120)
7	(409) Aspasia (63)	(925) Alphonsina (37)	Tomas Janik (236 ISR = 6%)	Oscar Canales (26 ISR = 22%)	NL (784)	UK (118)
8	(U III) Titania (61)	(9) Metis (34)	Wolfgang Rothe (224 ISR = 11%)	Wolfgang Rothe (25 ISR = 11%)	CH (704)	NL (91)
9	(423) Diotima (59)	(409) Aspasia (30)	Harrie Rutten (184 ISR = 8%)	C. Perello/A. Selva (25 ISR = 10%)	BE (436)	BE (65)
10	(9) Metis (54)	(144) Vibilia (25)	Jan-Maarten Winkel (169 ISR = 12%)	Jan-Maarten Winkel (20 ISR = 12%)	AT (408)	SK (53)
11	(216) Kleopatra (52)	(423) Diotima (24)	Henk De Groot (162 ISR = 12%)	Henk De Groot (19 ISR = 12%)	PL (313)	CL (52)
12	(50000) Quaoar (49)	(39) Laetitia (23)	Simone Bolzoni (161 ISR = 9%)	Pietro Baruffetti (19 ISR = 13%)	SK (171)	AT (44)
13	(554) Peraga (47)	(85) lo (21)	Oernulf Midtskogen (149 ISR = 2%)	Alberto Ossola (18 ISR = 35%)	NO (156)	US (40)
14	(791) Ani (47)	(51) Nemausa (20)	Pietro Baruffetti (146 ISR = 13%)	F. Van Den Abbeel (18 ISR = 19%)	PT (132)	PT (32)
15	(773) Irmintraud (46)	(275) Sapientia (19)	Patrick Degrelle (120 ISR = 6%)	Eberhard Bredner (17 ISR = 49%)	RU (122)	RU (29)
16	(85) lo (45)	(87) Sylvia (18)	Oscar Canales (119 ISR = 22%)	Eric Frappa (17 ISR = 40%)	BY (85)	PL (23)
17	(121) Hermione (45)	(308) Polyxo (17)	Joan Rovira (119 ISR = 29%)	Jan Manek (16 ISR = 31%)	HU (70)	GR (21)
18	(144) Vibilia (42)	(17) Thetis (17)	Hilari Pallares (118 ISR = 5%)	Zdenek Moravec (16 ISR = 20%)	US (68)	SE (21)
19	(87) Sylvia (41)	(554) Peraga (16)	Henk Bulder (118 ISR = 11%)	Tim Haymes (16 ISR = 14%)	GR (67)	JP (13)
20	(712) Boliviana (40)	(372) Palma (16)	Tim Haymes (117 ISR = 14%)	Tomas Janik (15 ISR = 6%)	CL (57)	UA (13)

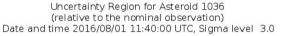
ISR = O+ / total, i.e. the 'individual success rate' in percent (Note).

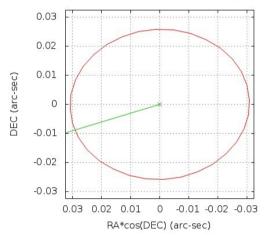

For observers only the db field 'observer' is considered, not observer mentioned in the 'comment field'.

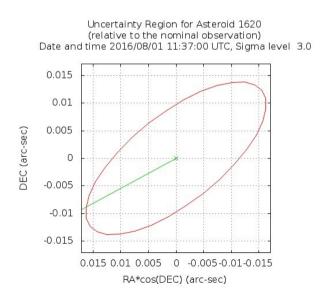
If the name has different notations, this is not considered (e.g. 'E. Hubble' and 'Edwin Hubble' doesn't count twice).

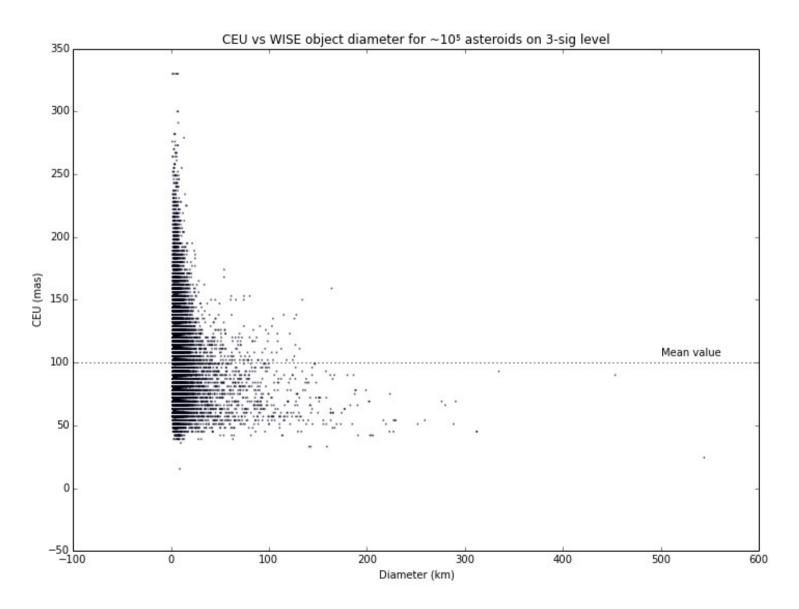
Post-Hipparcos (Pre-Gaia) Era

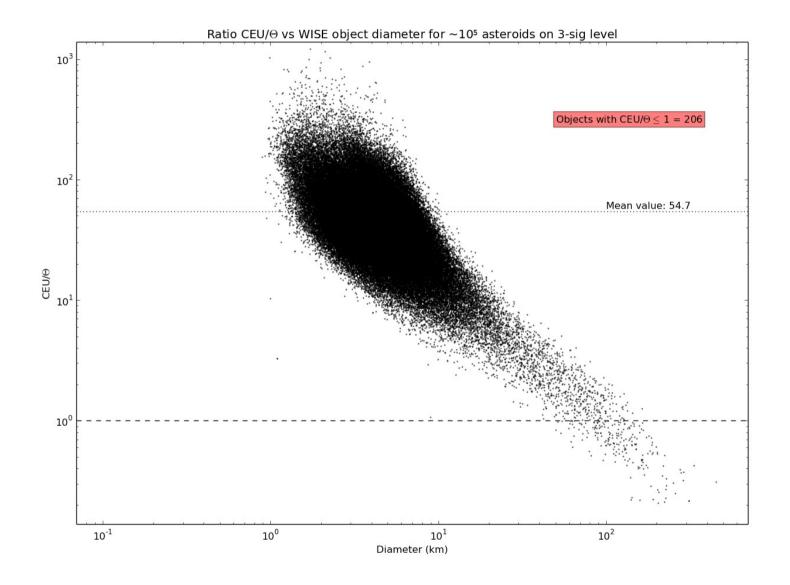
- Typical uncertainty for current star positions:
- > URAT1 : < ~ 50 mas</p>
- > UCAC4: < ~100 mas</p>
- Typical ephemeris uncertainty for MBA's: Anything from ~30...500 mas (dedicated updated orbit solutions typically < 50 mas)


Cross-track uncertainties

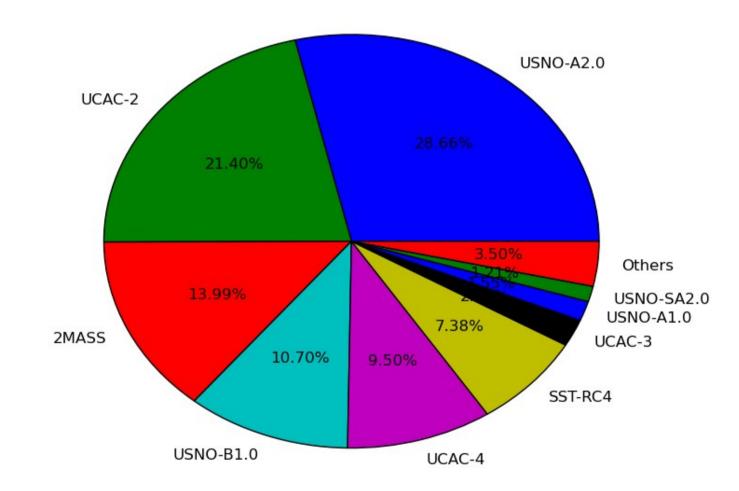



astorb.dat contains information about the accuracy of the orbit, **CEU :** current ephemeris uncertainty.


- CEU gives the length of the major axis of the uncertainty ellipse (1-sig level).
- The axis is usually lying on the line of variation => major part of uncertainty in event time, not in cross-track component (good !).


CEU >> angular diameter Θ of the asteroids means low prediction accuracy (i.e. low occultation probability for the observer).

Asteroid astrometric observations are


- influenced and limited in their accuracy by the observation process itself (instruments etc.).
- limited by the star catalogue accuracy, and
- biased due to systematic errors in the star cataloges used to reduce the astrometry (Carpino et al. 2003).

Pan-STARRS PS1 is one of the most accurate asteroid surveys with an astrometric quality of the order of 0.1" (100 mas).

Nevertheless, Milani et al. (2012) found that Pan-STARRS PS1 data have surprisingly high biases on the order of 0.05–0.1" with a strong regional dependence.

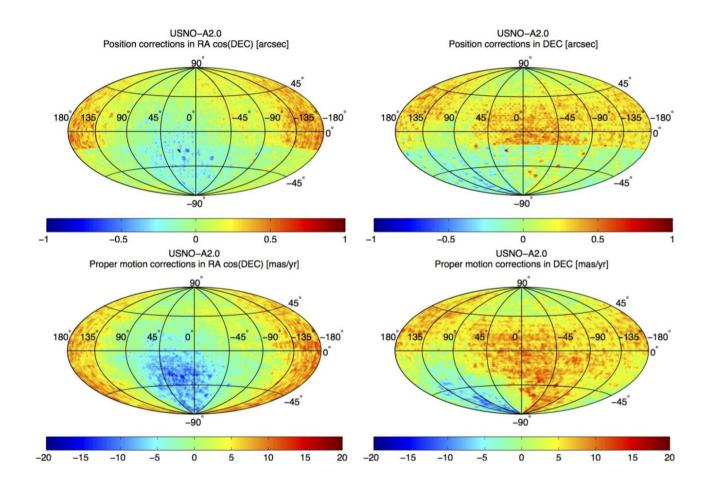
Astrometric observations

Distribution of star catalogs used for astrometric reduction (MPC 02/2016)

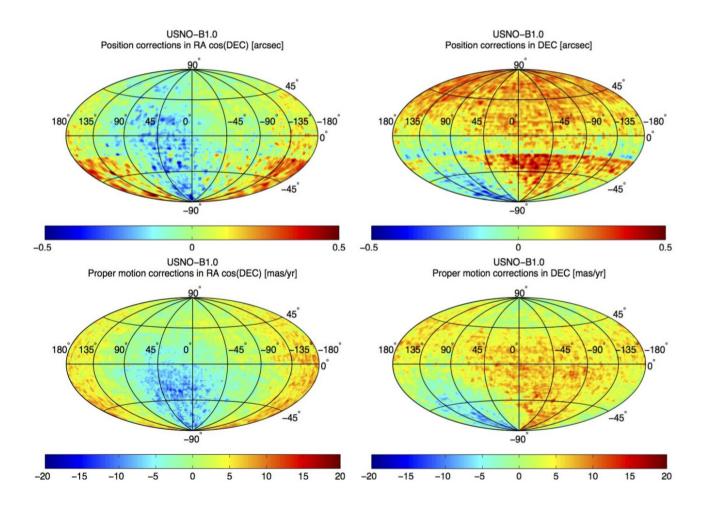
Total: 141,758,509

Procedure:

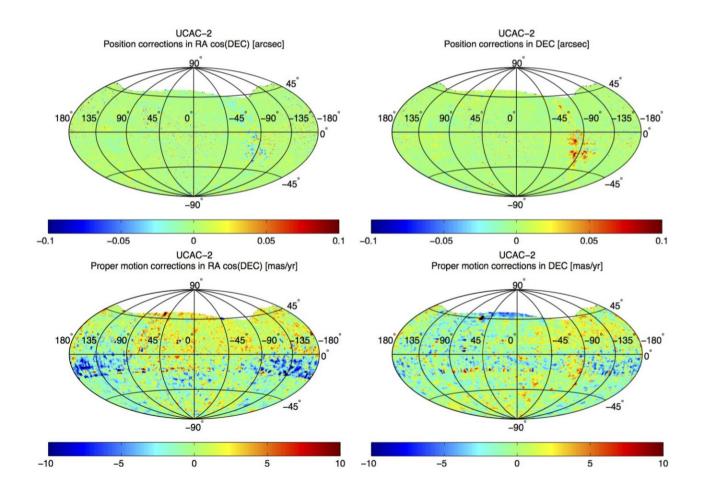
- Select a "reference" catalogue.
- For each catalogue cross identify all stars common in both catalogues.
- Compute difference in position (and proper motion).


Two Micron All Sky Survey (2MASS):

- All-Sky, deep and dense ("complete"). ~471 Mio. point sources.
- Rather good accuracy at epoch J2000: 100mas wrt to HIP/TYC2.
- But no proper motions ! Solution: take them from PPMXL


Catalog	$\overline{\Delta RA}_{2000}$	$\overline{\Delta DEC}_{2000}$	РМ	$\overline{\Delta \mu}_{\rm RA}$	$\overline{\Delta \mu}_{\rm DEC}$	Sky
	[arcsec]	$[\operatorname{arcsec}]$	inc.	$[\mathrm{mas/yr}]$	$[\mathrm{mas}/\mathrm{yr}]$	coverage
Tycho-2	0.02	0.02	Yes	0.7	0.7	100%
ACT	0.02	0.02	Yes	1.5	1.4	100%
2MASS	0.03	0.02	No	5.8	6.4	100%
USNO-A1.0	0.45	0.37	No	5.1	5.7	100%
USNO-SA1.0	0.45	0.37	No	5.0	5.5	100%
USNO-A2.0	0.21	0.24	No	5.1	5.7	100%
USNO-SA2.0	0.21	0.24	No	5.0	5.6	100%
USNO-B1.0	0.12	0.17	Yes	4.4	4.9	100%
UCAC-1	0.03	0.03	Yes	5.8	7.4	39%
UCAC-2	0.01	0.01	Yes	2.5	2.2	88%
UCAC-3	0.02	0.02	Yes	5.0	4.6	100%
UCAC-4	0.02	0.02	Yes	2.2	2.5	100%
GSC-1.1	0.47	0.38	No	6.8	6.6	100%
GSC-1.2	0.20	0.18	No	6.7	6.6	100%
GSC-ACT	0.15	0.13	No	6.7	6.6	100%
NOMAD	0.10	0.15	Yes	3.7	4.3	100%
PPM	0.23	0.24	Yes	4.1	4.2	100%
CMC-14	0.03	0.04	No	6.3	7.0	62%
SDSS-DR7	0.05	0.07	Yes	2.6	3.2	31%

Farnocchia et al., 2014


16/28

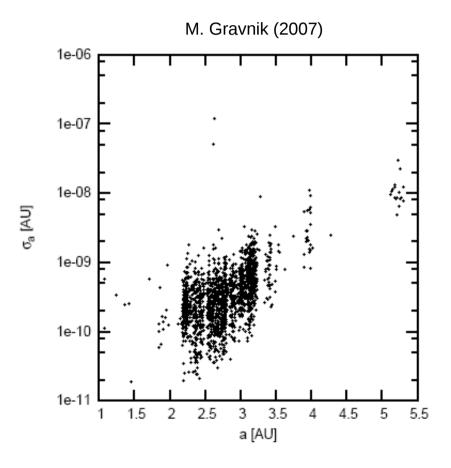
Farnocchia et al., 2014

18/28

Occultation prediction w/o debiasing

(922) Schlutia – 1UT 475-531156

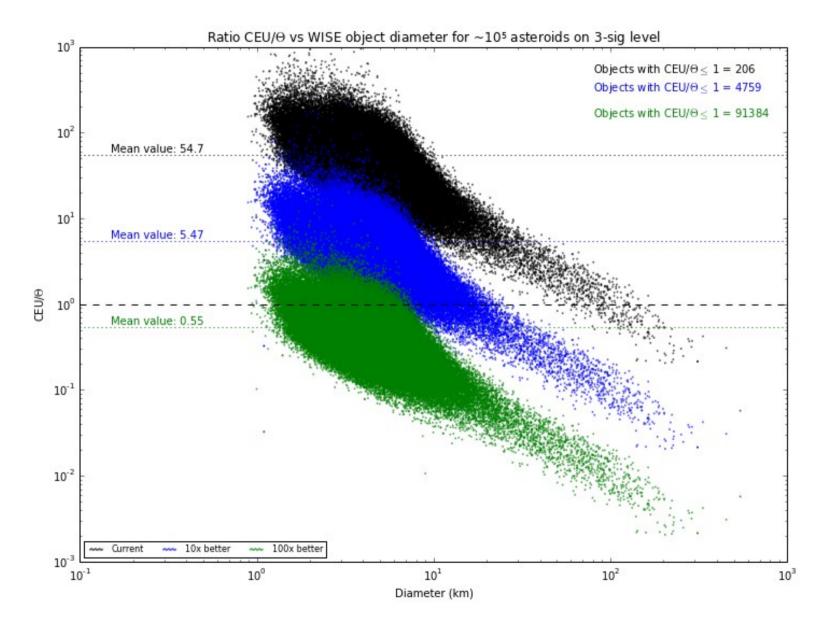
From Hipparcos to Gaia

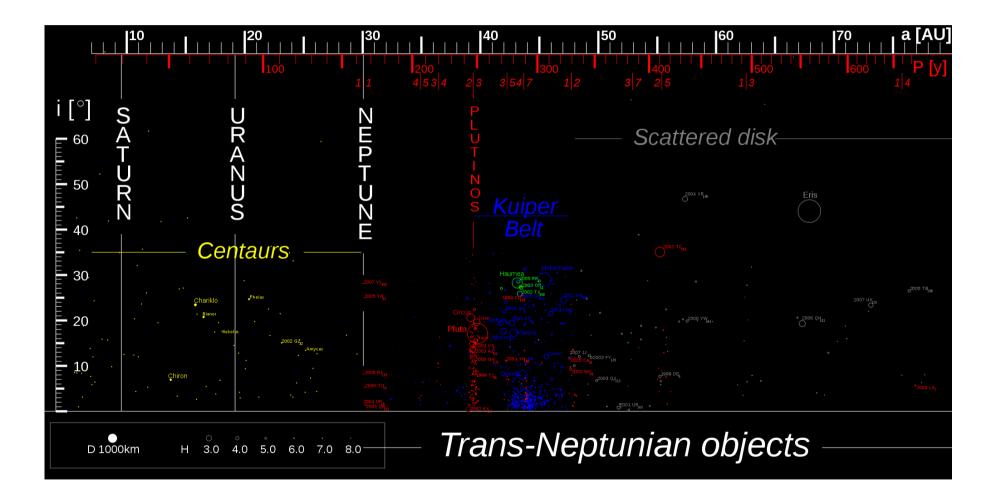

	Hipparcos	GAIA
Magnitude limit	12	20 mag
Completeness	7.3 - 9.0	~20 mag
Bright limit	~0	~3-7 mag
Number of objects	120 000	26 million to $V = 15$
		250 million to $V = 18$
		1000 million to $V = 20$
Effective distance limit	1 kpc	1 Mpc
Quasars	None	$\sim 5 \times 10^5$
Galaxies	None	$10^6 - 10^7$
Accuracy	~1 milliarcsec	7 μ arcsec at V = 10
	J1991.25	12-25 μ arcsec at V = 15
		200-300 μ arcsec at V = 20
Broad band	2-colour (B and V)	5-colour to $V = 20$
Medium band	None	11-colour to $V = 20$
Radial velocity	None	1-10 km/s to V = 16-17
Observing programme	Pre-selected	Complete and unbiased

The Gaia Era

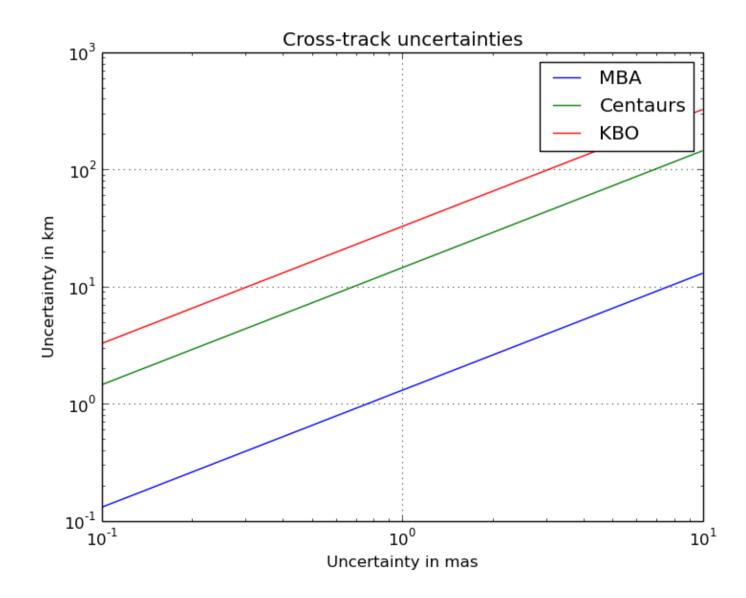
What can we expect from Gaia (data)?

- Immediately: far better (10²...10³) star positions.
- Intermediate: better asteroid orbits over the next yrs:
- Gaia catalogue reduced astrometry.
- Better debiasing tables (wrt Gaia).
- Long-Term: high-accuracy orbits based on Gaia observations only !?

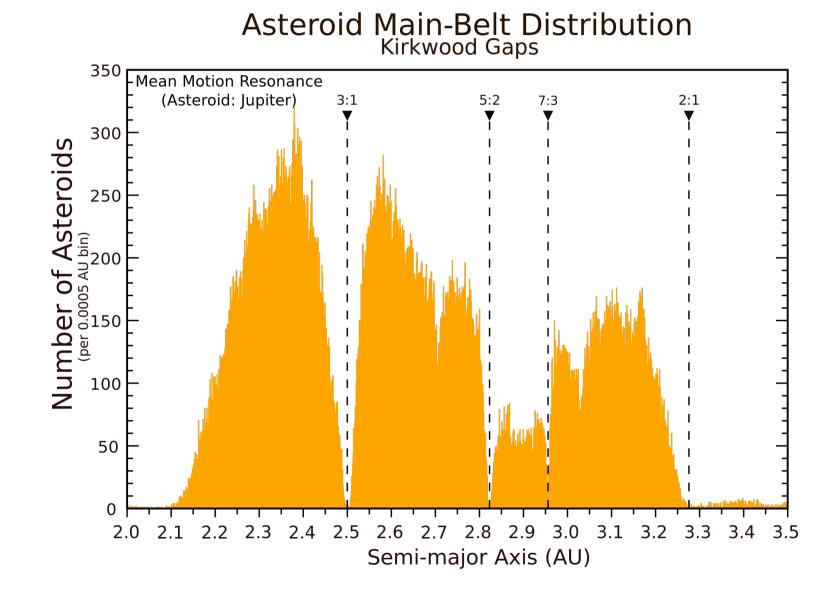

Orbit improvement


Accuracy from a pure Gaia data set:

 $10^2 - 10^3$ better than current.


The Gaia Era

What about TNO's / KBO's?



Cross-track uncertainties

Thank You for Your Attention !

Asteroids: Main Belt

