Pete and Paul's Observing Challenges 2021

Challenge Number One Venus at Dichotomy

- On 26th March 2021, Venus passed Superior conjunction
- It has now moved into the evening sky
- On 28th October 2021, Venus will appear to be at 50% illuminationdichotomy

- There is always a difference between the theoretical date and the observed date of dichotomy.
- In Eastern (evening elongations) observed dichotomy is later than predicted.
- To see Venus at 50% illumination you'll probably need a telescope as 49% or 51% looks the same in binoculars!
- There is an extra challenge in that Venus will be fairly low in the evening sky.

Drawing 1(IL): 1851UT, x111, Seeing: AIII CM1: 207.4° CM2: 295.5° Drawing 2 (W15): 1858UT, x111, Seeing: AIV CM1: 207.4° CM2: 295.9°

2020 March 22, Start: 1843UT, Finish: 1901UT. Sky: Twilight, Transparency: Good, Seeing: AllI-IV 203mm Newtonian Refletor, x111. Filter: W15 (yellow). Phase(th)= 52.3%, Phase(IL)= 50%, Phase(W15)=50%, Disk Diameter= 23", Ls= 136°

Paul G. Abel, Leicester UK.

- It will be best to try and do this in the day time.
- To find Venus in the day requires great care- if you're not confident then don't do it!
- Best method (if you have an equatorial mount set up):
 - 1. First look up the RA and Dec of the Sun and Venus
 - 2. Cap the telescope and move the telescope so that the finder scope is projecting the Sun. Then cap the finder scope.
 - 3. Turn the RA and Dec dials to that of the Sun.
 - 4. Move the telescope to the RA and Dec of Venus.
 - 5. Remove the caps and using a low power eyepiece, Venus should be in the field.

- Best time to start will be on the day of theoretical dichotomy: 28th October-Venus will appear slightly less than 50%.
- Continue to observe for a few days after the 28th October and find out when the planet seems exactly 50% illuminated (and the terminator is a straight line and not slightly concave).
- Note, if you observe with filters- the phase anomaly is even greater in a bluer filter than in IL, so use white light or a yellow filter for this observation.
- Finally: Send in your observations to the Mercury and Venus Section Director (me!)

Challenge Number Two The Saturn Moon Challenge

Saturn's Moons

The 'Inner' Moons

The 'Mid' Moons

The 'Outer' Moon - Phoebe

Moon Locators - WinJupos

🖹 Ephemerides of Saturn 2021/06/16 01:00.0		<i>c</i> 2 <i>t</i>		
Date 2021/06/16 (Wed) UT 01:00.0 Geogr. longit001		CM	Diameter	Visual magnitud
[yyyy/mm/dd] [hh:mm.t] [±ddd° _{Moon}	Mimas	27°	0.059"	13.3 ma
	Enceladus	52°	0.074"	12.1 ma
Time -10 -1 Real time +1 +10 minutes Animation 🔨 <	Tethys	49°	0.156"	10.6 ma
Ephemerides Image caption Moon coordinates Moon ephemerides Graph	Dione	83°	0.167"	10.8 ma
CM1 128.0° CM2 327.0° CM3 169.5° CLat +	Rhea	119°	0.228"	10.1 ma
	Titan	344°	0.765"	8.7 ma
	Hyperion	0°	0.042"	14.6 ma
	Japetus	183	0.214"	11.5 mag
Hyperion				
C.M. + equator				
Japetus	n .			
Z Taxturina	Rhe			
	Dione			
	MirEnceladus			
C Shading	etnys			
Orientation				
○ Planetary				
Equatorial				
O Horizontally				
bttp://iuppoport				
nttp://jupos.org/	gn/dow	vnioa		
				/
<			>	

Moon Locators – Cartes du Ciel

https://www.ap-i.net/skychart/en/start

Moon Locators – Sky Safari Pro

Saturn's Visibility in 2021

Opposition: 2 August 2021

2021

Saturn

Challenge Number Three An Early Partial Solar Eclipse

Partial Solar Eclipse- the Moon against the Spicule Layer

- There will be a annular solar eclipse on 10th June 2021.
- The path of totality crosses Canada and the far north.
- From the UK, it will appear as a partial eclipse and the further north you are, the more of the eclipse you will see.
- The start and end times of the eclipse vary depending on your location (see BAA Handbook)
- For London, first contact occurs at 09:08:40 UT, max obsc. = 20%
- For Aberdeen, 09:10:42, 32.8% Sun is covered.

www.EclipseWise.com/eclipse.html

Thousand Year Canon of Solar Eclipses ©2014 by Fred Espenak

Partial Solar Eclipse- the Moon against the Spicule Layer

- This is an excellent opportunity to observe the Moon against the spicule layer of the sun.
- The spicule layer is part of the Sun's chromosphere.
- The chromosphere is a layer of hot hydrogen gas above the photosphere of the Sun.
- Normal white light observations show the photosphere, a H-alpha telescope (or H-alpha filter) is required to see the Chromosphere.

Partial Solar Eclipse- the Moon against the Spicule Layer.

- For this challenge, you'll need access to a H-alpha telescope or a suitable H-alpha filter which can be fitted to the telescope.
- The first thing to do is to make sure you know the orientation of the sun in your telescope (do this before the day!)
- You'll need to know which way is north and the directions of east and west.
- In a mirror inverting telescope (with no star diagonal), the Moon will pass over the Sun's disk from the 7'oclock position.

https://www.atoptics.co.uk/ tiltsun.htm

Partial Solar Eclipse- the Moon against the Spicule Layer

ullet

- You'll need to work out what time first contact is due to occur from your location.
- Once you have the time, start observing the sun in H-alpha about 15 minutes beforehand.

First contact 10:07 BST Maximum eclipse 11:14 BST

Last contact 12:26 BST

Correct for central UK and will vary slightly both in eclipse coverage and timing, depending on location First and last contact overlaps exagerrated for clarity

Partial Solar Eclipse- the Moon against the Spicule Layer

ullet

- Keep a careful watch out for the back disk of the Moon eating against the spicule layer of the Sun!
- Try to make a drawing or grab an image of the event as it's fairly rare to capture the event from the UK!

First contact 10:07 BST Maximum eclipse 11:14 BST Last contact 12:26 BST

Correct for central UK and will vary slightly both in eclipse coverage and timing, depending on location First and last contact overlaps exagerrated for clarity Challenge Number Four A New Twist on M57's Central Star Lyra

Lyra

Messier 57

Messier 57

Messier 57

Afocal Imaging with a Smartphone

Smartphone to Eyepiece Adapter

Smartphone to Eyepiece Adapter

The Challenge...

Challenge Number Five The Moons of Uranus

The moons of Uranus

Uranus Observation

- Uranus is the 7th planet from the Sun and orbits way beyond Saturn.
- Uranus comes to opposition on 4th
 November in the constellation of Aries.
- It will be magnitude +5.7 and have an apparent diameter of 3.8"
- Although the planet is technically below the threshold of naked eye visibility, you will need binoculars to see it.
- For this challenge, you will need at least an 8 inch (203mm) telescope to see the brightest of the satellites.

Disk Drawing: 2241UT, x540, CM: 153.2°, Seeing: All

²⁰¹⁸ September 23rd, Start: 2231UT Finish: 2249UT, Seeing: Alll, Transparency: Good 508mm Planewave Dall-Kirkham, University of Leicester Observatory, x540. B= 43.4°, Ds= 41.9°, CLat= 44.7°, Disk Diameter= 3.7", Ls= 30°
The moons of Uranus

- The moons of Uranus are quite faint, and the best time to see them is when Uranus is at opposition.
- Finding Uranus is fairly easy it's located in Aries, near Taurus.

- Locate the star Sigma Arietis, then star hop to Omicron Arietis and you should see Uranus nearby (or alternatively you can use setting circles)
- Even low power eyepiece, Uranus should be obvious as a small greenish disk.

The moons of Uranus

- Graphic shows the positions of the 5 brightest moons on 4th November at 2300UT.
- Their magnitudes are:
 - Titania, Mv= +13.9
 - Oberon, Mv= +14.1
 - Ariel, Mv= +14.3
 - Umbriel, Mv= +14.9
 - Miranda, Mv= +16.4
- I have seen Titania with my 8" Newtonian and the others should be visible in my 12" Newtonian (except Miranda!)
- How many can you see?

Challenge Number Six Thin Moon Hunting

Lunar Phases

Lunar Phases

The Danjon Limit

Sun

Moon

~7 degrees separation

그는 그 문화 문화 문제 문제 문제

Thin Moon (Age 22h49m) 2005-06-07 20h44m UT

Canon 10D, 1/45s @ ISO400, f./5.6 200mm lens

Pete Lawrence, West Beach Selsey, UK

Pete Lawrence

Upcoming Thin Moon Dates...

April: 12th, 0.7d, 0.4% waxing, 7.9° sep. May: 12th, 1.0d, 0.9% waxing, 10.6° sep. June: 9th, 28.3d, 1.6% waning, 13.8° sep. 11th, 1.3d, 1.5% waxing, 15.1° sep July: 9th, 28.7d, 0.8% waning, 9.6° sep. 10th, 0.7d, 0.5% waxing, 9.3° sep. August: 8th, 29.1d, 0.2% waning, 5.5° sep. 8th, 0.2d, 0.1% waxing, 4.7° sep. **September:** 6th, 28.6d, 0.9% waning, 10.5° sep. 7th, 0.7d, 0.6% waxing, 10.2° sep.

Challenge Number Seven The Rilles of Gassendi

- Gassendi crater is a large impact crater located on the northern edge of the Mare Humorum.
- Gassendi is some 110km in diameter and has a depth of 1.9km.
- It is quite distinctive with the smaller impact crater, Gassendi A overlapping its northern wall.
- The feature is best seen in the evening sky when the Moon is a few days from full (phase of 81%)

- The rilles of Gassendi are a splendid sight telescopically!
- You will need a telescope to be able to see them, and they are best observed when they are filled with shadow.
- This typically occurs when the terminator is nearby- say about 80% illumination.
- To spot them, you will need to get the timing right!
- Each month, work out when the Moon is at the correct phase- the free software 'dial a moon 2021' is excellent.

Gassendi Crater

2021 March 24, Start: 2149UT Finish: 2214UT. Seeing: All, Tr; Average 305mm Newtonian Reflector, x300 & x600.

Moon's age: 11.5d, Illumination= 81%. Colong: 46° to: 46.2°

- Google 'dial a moon 2021' it is a NASA website.
- When you're at the site, you can input the date and time and the website will give a very high resolution image of the Moon for that date.
- You can work out each month when its best to try- remember you can try again in the morning sky!
- You will need fairly stable seeing to be able to see the smaller rilles- the better seeing occurs when the Moon is higher in the sky.

Gassendi Crater

2021 March 24, Start: 2149UT Finish: 2214UT. Seeing: All, Tr; Average 305mm Newtonian Reflector, x300 & x600.

Moon's age: 11.5d, Illumination= 81%. Colong: 46° to: 46.2°

Challenge Number Eight Smartphone NLC's

What are NLC's?

What are NLC's?

Natural vs Artificial Light

Natural vs Artificial Light

Det

Be

21 June 2019

10

Hints and Tips

- High(ish) ISO
 Multi-second exposure
 Stable platform
- Remote shutter release

Challenge Number Nine Distance of Delta Cephei

- Delta Cephei is a bright variable star in the constellation of Cepheus.
- In general, the star varies from magnitude 3.5 to 4.4 over approximately five days.
- The star can be seen easily with binoculars or a small telescope.
- Circumpolar- visible all year from UK.
- Cepheid variables are special types of variable star- they have a well established relationship between their intrinsic brightness (absolute magnitude) and their distance.

• Once you measure the period of variation of the Cepheid variable, we can look up its absolute magnitude on the graph. (The top curve!)

- When we have the absolute magnitude, *M* we can look up the average apparent magnitude *m* (this is how bright the star appears in the sky)
- There is a very useful relationship between magnitude and distance:

 $m - M + 5 = 5\log(d)$

• Where *d* is the distance in Parsecs. Since we want to calculate the distance, we re-arrange this formula for *d*:

$$d = 10^{(m-M+5)/5}$$

• When we have this value, we need to multiply it by 3.26 to convert Parsecs into light years.

- The first thing to do is to make estimates of the apparent magnitude of Delta Cephei.
- Here is a comparison chart for Delta Cephei- it contains lots of stars of different brightness.
- Each night, compare the brightness of Delta Cephei with a suitable comparison star to deduce its apparent magnitude.
- See the BAA Variable Star Section website if you need help to estimate the magnitude of variable stars.

Please use the photometry table for CCD observations. VSP Note: Naked eye range V= 3.42 - 4.19 (including the 6.3 mag. companion 41" away).
Measuring the Distance to Delta Cephei

- If you plot the magnitude over 5/6 consecutive nights, you'll get a light curve.
- From this you can get the period, and from the previous graph, the absolute magnitude. Then substitute the values into the formula!

Worked Example!

Suppose we have a variable star which we make magnitude estimates for two weeks. We find it has a period of 10 days and we look up it's average apparent magnitude m = +3.5. First we use the graph to find the absolute magnitude M = -4.1. Substitute this into the formula: $d = 10^{(m-M+5)/5}$

Gives:

 $d = 10^{(3.5 - (-4.1) + 5)/5} = 331.13$

We multiply this by 3.26:

 $d = 331.13 \times 3.26 = 1079.5$

So the Cepheid in this example is 1079.5 light years away!

Other Cepheids...

- You might want to do this measurement a couple of times- repeat the magnitude estimates to check the period.
- If you get this working to Delta Cephei, there are some other stars you can try using exactly the same method:
 - RU Cam
 - R Scuti
 - RV Tauri
 - AL Virginis
 - W Virginis

Challenge Number Ten Imaging a Galilean Satellite Eclipse

Jupiter

The Galilean Moons

Moon Events

15 September 2011 03:22 UT

Jupiter at Equinox

Mutual Events

IMCCE

INSTITUTE

RESEARCH

SERVICES

TEACHING

PUBLICATIONS

Research

Observation campaigns

- Presentation
- PHEMU21 campaign of observations Equinox on Jupiter in 2021
- The observer's guidebook

Observational campaign of the mutual phenomena of Jupiter's satellites

Presentation

Mutual events occur when the Earth and the Sun are crossing the common plane in wh satellites orbit. In the case of Jupiter's satellites, this configuration happens every 6 ye

https://www.imcce.fr/recherche/campagnesobservations/phemus/phemu

Imaging the Galilean Moons

Ganymede

2010-08-24 01h00m UT Diameter: 1.8" Altitude: 37°

WinJupos simulation

RGB

Pete Lawrence

Mutual Event Example

Upcoming Mutual Events

6 May - Io's shadow eclipses Europa 04:26-04:32 BST (03:26-03:32 UT)

04:26:00 BST (03:26:00 UT) 04:29:30 BST (03:29:30 UT) ۲

04:32:00 BST (03:32:00 UT)

29 May - Ganymede's shadow eclipses lo 03:27-04:17 BST (02:27-03:17 UT)

Upcoming Mutual Events

View through a telescope (south up) at 04:48 BST on 14 May

Pete and Paul's Observing Challenges 2021

Email observations to paul.abel@yahoo.co.uk