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Abstract

The paper examines Babylonian records, from the 1st millennium B.C., of planets 
passing fixed stars and specifically their up/down differences in linear cubits. It 
shows they were using the top of a gnomon as a foresight around which the observer 
moved on non-circular arcs, where the ratio of degrees per cubit was 2.5° (azimuth). 
Particularly near the horizon they were able to ensure close alignment in longitude 
between the star and the planet. The up/down measurements were then almost 
identical to the distance between the two bodies, using a straight rule. Finally an area
north of the Western Court of the Southern Palace is identified as a possible site of 
the observatory. Appendix A gives a worked example and Appendix B looks at other 
developments in the region.

This study is based on the surviving Babylonian records of planets passing fixed stars in 
the years from –418 to –73 BC .1 The collection includes 1049 passages, where the 
up/down differences were recorded in linear units with a maximum of 6 cubits and a 
minimum of 1 finger (1/24th cubit). There were also 27 records of similar before and after 
differences.  The recorded information was laconic with an up/down report for the year
 –418 reading simply ‘Month II, night of the 9th, Mars was 4 cubits below  Leonis’.2

Not all the possible combinations of fingers and cubits are represented. There were certain
preferred values with rounding errors running from +/- ½ finger, for distances under 6 
fingers, to +/- 6 fingers for those above 4 cubits. In percentage terms such errors reach 
+/- 50% with a minimum of about +/- 3%. For distances below 1 cubit, the percentage is 
between 7 % and 50% and above 1 cubit between 3% and 8%.

There are gaps in the longitudinal coverage of the Normal Stars and, consequently, in 
declination. In terms of azimuth, the gaps, near the horizon, can be seen in Figure 2.

Professor Jones concluded that the up/down cubit values were related to differences in 
latitude and found the mean ratio of degrees (latitude) per cubit to be about 2.3°, which 
lies between the two ancient norms of 2° and 2.5°.

Ptolemy, in his criticism of the data, provided clues about how the measurements were 
made:

In general, observations [of planets] with respect to one of the fixed stars, when taken 
over a comparatively great distance, involve difficult computations and an element of 
guesswork in the quantity measured, unless one carries them out in a manner which is 
thoroughly competent and knowledgeable. This is not only because the lines joining the 
observed stars do not always form right angles with the ecliptic, but may form an angle of 
any size (hence one may expect considerable error in determining the positions in latitude
and longitude, due to the varying inclination [to the horizon frame of reference]); but also
1 Jones, A., A Study of Babylonian Observations of Planets Near Normal Stars, Arch. Hist. Exact. Sci. 58 
(2004) pp.475-536. I am very grateful for Professor Jones for giving me access to his Collection A and also 
to my son, Geoffrey, for help with the drawings and his patience.
2 Sachs A.J. and Hunger H., Astronomical Diaries and Related Texts from Babylonia, Vienna 1988, Vol. I, 
p.63



because the same interval [between star and planet] appears to the observer as greater 
near the horizon, and less near mid-heaven;[footnote] hence, obviously, the interval in 
question can be measured as at one time greater, at another less than it is in reality.

[footnote] This appears to be the only reference to the effect of refraction (if that is what it is) in the 
Almagest, despite its obvious relevance to the observations of Mercury’s greatest elongation.…3

Clearly he considered they were thinking in terms of the ecliptic, but were also assuming 
lines of longitude and latitude were always at right angles.

To investigate how and what they were measuring two main assumptions were made:

1. The observer used a linear measuring rod to determine the up/down or before/after 
position of the planet in relation to one of the 28 so-called Normal stars. He did 
this by aligning one end with the star and the other point with the planet, using the 
top of a vertical gnomon as a foresight (Figure 1).4 The rod may have been hand-
held or fixed in a rest. For each passage, the ratio of degrees (latitude) per cubit 
was converted to DTOG, the distance of the observer’s eye from the top of the 
gnomon.5 The mean ratio of 2.3° per cubit implied that his eye was about 25 cubits
from the top of the gnomon, which equates to ca. 13 metres and gives an idea of 
the size of the device, assuming a cubit of about 52 cms. Any errors in 
measurement and recording, including the not inconsiderable rounding errors, are 
accumulated within the DTOG value.

2. In 96% of the surviving records the difference in longitude (planet less star) was 
between –3.3°/+3.8°. Consequently the distance between the two bodies would be 
only marginally greater than their difference in latitude. By repeated iterations 656 
passages (63% of the surviving records) were found where the distance between 
the two bodies was within 0.2% of the recorded up/down distance in cubits.6 The 
margin of 0.2% is small but it equates to a 3.6° difference in the before/after 
positions, if a rectangular co-ordinate system was used, as Ptolemy indicated.7 

Professor Jones calculated the ecliptic co-ordinates of the outer planets for midnight and 
those of the inner planets about 4 hours, either before or after midnight.8 No adjustments 
were made either to these celestial co-ordinates or for refraction.

Appendix A has a worked example of the calculations for one passage.

3 Toomer G.J., Ptolemy’s Almagest, Duckworth, London, 1984, p.121.
4 The main justification for such an arrangement is that it brings the measuring scale close to the observer. It 
is not essential as the observer could be at the centre of the device with the scales about 13m away, but in 
that case it is hard to accept the ‘measurements’ as much more than estimates.
5 DTOG, distance from top of gnomon, equals 1/sine(ratio degrees per cubit)
6 Varying the altitude of the two bodies changes the linear distance between them. Out of the 128 passages 
with up/down distances of 4 fingers or less and rounding errors greater than 12.5%, only 29 had the distance 
apart within 0.2% of the recorded value.
7 Using plane trigonometry, Cosine (3.6°) = 0.998.
8 Jones A., op cit. p.481 gives UT 21 for the outer planets and either 17 or 1 UT for the inner planets.
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Before and After Alignment

There has been considerable discussion about their ability to measure in ecliptic co-
ordinates.9 Of the 656 passages 59% were most closely aligned in longitude particularly at 
lower altitudes. In 78% of these passages, the longitude difference (planet less star) was 
less than 1°, compared with 63% of all surviving records. Other passages were better 
aligned in R.A. (34%) or even azimuth (7%) (Figure 2). This confirms Professor Jones’s 
conclusion that they were thinking in ecliptic co-ordinates, but, it now appears, their 
alignments, in longitude, were closer at lower altitudes. The mean altitude of the stars for 
the passages, best aligned in longitude, was 7.5° and, for the others, 16.6°.

Positions of the Observer’s Eye

The passages, best aligned in longitude, were sorted to the order of the star’s azimuth, in 
the west and the east. The relationships between azimuth and, separately, the north/south 
and east/west cubit co-ordinates of the eye of the observer are shown in figure 3. 

Surprisingly the relationship between azimuth and the north/south co-ordinates is very 
close to linear, with each cubit corresponding to 2.5° of azimuth, which implies that the 
paths of the observer were neither circular arcs around the gnomon nor straight lines.10 
Instead those paths must have been stepped arcs.11 This provides a good indication of the 
intended paths of the observer in the east and west.12 However, in  practice, within 20° of 
due east/west, the divergence from a straight line is less than 1 cubit and could well have 
been ignored, if a straight line was more acceptable. 

The observer’s position in the vertical is generally within 6 cubits of the top of the 
gnomon, but drops to 10 or 11 cubits in places (Figure 4). There is a notable anomaly 
about 5 cubits north of the gnomon, where, particularly in the east, the observer’s eye 
drops down to about 10 cubits. This anomaly also marks a sharp fall in the number of 
passages, when the observer is between 5 and 10 cubits north of the gnomon.

From the foregoing we can deduce that there was a structure around the gnomon which 
facilitated observations where the observer’s eye was within 6 cubits of the top of the 
gnomon. 

There are other aspects brought out by the moving mean lines in figure 4.13

9 Hunger H. & Pingree. D. Astral Sciences in Mesopotamia, Brill, 1999, p.269.
10 This also confirms that they were thinking in terms of 2.5° per cubit.
11 I am most grateful to P. Starkey, a neighbour and mathematician, for providing the modern polar equation 
for such curves: r sin θ = (Ymax .2/π) θ, where r is radius and θ the angle in radians. Spiral curves may have 
been used in Egypt at an early date (see Appendix B). A similar linear relationship, but closer to 2.6° 
(azimuth) per cubit, was found for those passages best-aligned in R.A., indicating that for those passages the 
observer was slightly closer to the gnomon. As they were also higher, it implies that the observer’s path, in 
cross-section, was like a steep-sided bowl.
12 A target ratio of 2.5° per cubit implies the distance to the top of the gnomon on the east/west line was 
about 23 cubits (1/22.9 = Tan 2.5°). From there it is simple to calculate thirty-six cubit steps, each of 2.5°, to
the north and south. With due north/south being at 0,36/0,-36 and due east/west at ca. 23,0/-23,0. The 
intermediate positions at 45° are +/-18, +/-18. With 36 steps the sum of each successive hypotenuse totals 
44.6 cubits, so along that path each cubit averages about 2°. In practice the steps may have been irregular 
and larger than the 1 cubit assumed. If used to measure altitude, rather than azimuth, such a curve would 
resemble the recumbent crescent moon, a common motif in Mesopotamia, but an impossible position for the 
moon in practice. 
13 Moving means help to smooth out erratic data, but depend on how the data was sorted. In figure 4 it was in
order of N/S cubits, but in figure 6 in order of azimuth.
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A Possible ‘Observatory’

To visualise the observatory, we might think of a 6 cubit gnomon standing above the flat 
roof of a building with the much lower areas corresponding either to the ground outside or
to interior open courtyards. In the Southern Palace at Babylon, there are many such 
courtyards, but there is an area north of the Western Court of particular interest. Before the
whole of the area had been excavated, a part to the north-east was described as follows:

The houses of this part of the palace are remarkable for the strength of their walls and the
admirable regularity with which they are laid out. Court 38 is reached by a passage-way 
from the Principal Court, the latter through a hall, as in the case of 25, 26 and 27, opens 
with three doors on to court 38. Between the doors, pillars project from the walls and 
correspond with others on the opposite side. They must have served as piers to support 
arches for the ceiling, although it is difficult to make out clearly what was the object of 
this structure.

 The roof of this area of the palace was evidently intended to support more weight than 
usual. It may appear improbable that an observatory would be rectangular, but we can 
perhaps think of it as being like graph paper. Today we use Mercator charts, with 
rectilinear lines of longitude and latitude, and also Ordnance Survey maps with a 
rectangular grid. It is a question of balancing the pros and cons of such arrangements.

There are circles in the sky which produce straight lines, aligned with the cardinal 
directions, on the ground. Firstly there is the meridian. Secondly a prime purpose of an 
observatory would have been the measurement of time both at night and during the day. In
a horizontal sundial the hour-line for 6 hours to transit runs due west/east through the pole.
Thirdly the shadow of the sun, at the equinoxes, runs due west/east just north of a 
gnomon.14 We thus have three perfectly straight lines – the meridian, the hour-line for six 
hours to transit and the shadow of the sun at the equinoxes – and we have already noted 
that the stepped arcs run sensibly due north/south within 20° (8 cubits) of due east/west. 
Together these lines form a near rectangular outline for observations.

Just south-east of court 48 is a short length of wall of abnormal width (1.8m), which is 
aligned with a passage leading from the northern wall of the palace.  None of the other 
similar passages, running due south, from the oblique northern wall, is so short.15 The 
wide wall and the short passage may perhaps have marked the meridian. 

The short thick wall links two substantial east/west walls, about 5m apart; one just south 
of court 48 and the other north of the transverse corridor.16 

14 With a gnomon of 1 cubit, on a latitude of 32.5°, the pole would be 1.57 cubits to the south and the 
equator 0.637 to the north, with the distance between them being 2.207 cubits.
15 The oblique northern wall of the palace is stepped, both vertically and horizontally, and is inclined about 
17° from east/west. The 17° of azimuth matches that quoted for the limits of the path of Anu in Walker C. 
(editor), Astronomy before the Telescope, British Museum Press, 1996, p.48. It corresponds to the 
rising/setting of stars with a declination of +/- 14.3°, which is close to the 15°, for the Path of Anu, quoted in
Hunger H. and Pingree D., Astral Sciences in Mesopotamia, Brill, Leiden, 1999, p.61.
16 The two east/west walls may perhaps be linked to anomalies in Figure 4. Such walls would prevent the 
observer going lower for higher altitudes, and would oblige him to move nearer the gnomon. The most 
northerly of the two walls is aligned to the well-head NW of court 47 and may have carried a water conduit.

4



The stepped curves, with each north/south cubit corresponding to 2.5° of azimuth, would 
fit within the north/south width of this part of the palace, with the gnomon about midway 
between the two east/west walls. However, as we will see, there are reasons to believe it 
was perhaps ca. 2m further north. In figures 5 & 6 it is on the east/west wall just south of 
the two courts, 39 and 48. 

Figure 5 shows:
the paths of the tip of the sun’s shadow at the solstices, equinoxes and for those stars that 
transit overhead, 
the hour-lines around the pole, 
the stepped arcs, 
bearings around the gnomon and 
radial distances from the gnomon17 Radial distances formed part of an older table of 
shadow lengths.18

Celestial and associated phenomena influenced the layout in this area of the palace. 
Junctions are marked in figure 5 by small circles of radius 0.5 cubits or about 26 cms.

The following table refers to the room immediately north of court 39.

Table 1.
Corners of Room to north of court 39

Location
SW 3rd hour-line from transit
Exit to south Azimuth 45° and Stepped arc at 18(N),18(E) cubits from gnomon
SE Radius 30 cubits and Winter solstice shadow
NE Azimuth 45°
Exit to north Radius 30 cubits
NW Azimuth 30° and Stepped arc at 24(N) cubits from gnomon

With a 6 cubit gnomon, the line of the equator would lie above the passage linking the two
courts and the pole would be on the more southerly of the two parallel walls. The equator 
coincides with the anomaly noted earlier (Figure 4). Furthermore the transit shadow of the 
sun at the winter solstice would fall on the end of the short passage running south from the
city wall. The NW corners of both courts would be on a bearing of 45° from the gnomon.

The proposed site seems plausible, even though having the gnomon in such a position is 
fraught with problems, caused by the many towers and turrets, particularly those around 
the palace itself. They were slender, but high and closely spaced, so that they would 
appear like a solid wall, if viewed obliquely.19

Figure 2 shows that there was an almost complete dearth of passages, near the horizon, 
between bearings of 6° and 22° from due east/west. To the south-east the large gateway 

17 Berossus is considered to have invented the hemicycle sundial around 300 B.C. (Cousins F. W., Sundials, 
Redwood Press, Trowbridge, 1972,  p. 72.)
18 Hunger H. & Pingree D., Mul-Apin, Horn, 1989. p 153/4. The shadow length table is discussed in 
Neugebauer O., A History of Ancient Mathematical Astronomy, Vol. I, Springer-Verlag, Berlin, 1975, p 
544/5, by Bremner R.W., Die Rolle der Astronomie in den Kulturen Mesopoatmiens, Symposium, Graz, 
1991, pp 367/382 and by Hunger H. & Pingree D., Astral Science in Mesopotamia, Brill, 1999. pp 79/82. 
See also Appendix B, pages 18/21.
19 The turrets were closely spaced and with a width of about 6.5m. Viewed from within an angle of about 50°
there would be no visible gaps between adjacent turrets.
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between the Central and Principal Courts is on a bearing 12/19° from due east and could 
well have blocked the view to the horizon. To the south-west there is the Western Citadel, 
where maybe there was a similar high structure.

To check alignments at night, the observer would need to get his eye down to base level. 
A schematic drawing shows the palace roof as flat, but with the major north/south walls 
projecting above roof level.20 In the area of the proposed observatory, the tops of all the 
walls were, perhaps, raised to 1.5 cubits above roof level with the gnomon 6 cubits higher 
still.21 The main level at 6 cubits below the top of the gnomon would receive the shadow 
of the sun and, at night, the eye of someone sitting on the roof itself would be in the same 
plane.22

 An additional platform, 3 cubits below the top of the gnomon, would enable the observer 
to measure on the horizon. He could further adjust the level of his eye by standing on a 
block or by kneeling23 In the two open courts the observer would be able to go much 
lower.

Even if the observer was meant to stick to the designed paths, there would be nothing to 
prevent him making observations wherever he could get a sight of both the gnomon and 
the celestial bodies.

The moving means of the positions (Figures 4 & 6)), show that in both the west and east, 
the observer’s path was generally close to the stepped arcs.  On both sides, near the path of
the sun at the summer solstice, the positions of the observer are closer to the gnomon, than
indicated by the stepped curve (Figure 6). There may, perhaps, have been some sort of 
track marking the shadow of the sun at that extreme, preventing the observer going deeper 
for higher altitudes and obliging him instead to move nearer the gnomon. In such cases 
Ptolemy’s remark about the same interval (angle) appearing ‘to the observer as greater 
near the horizon, and less near mid-heaven’ would apply.

Passages, where the depth was more than 6 cubits, are shown by heavy lines, notably in 
the north and due east and west of the gnomon (Figure 6). In the north-west the observer 
was at a significant depth over what appears to be a large area of solid brickwork, but it 
could have been modified without leaving a trace in the archaeological record.24 On the 
east the depth was also significant in the south-east corner of court 39. 

The anomaly, 5 cubits north of the gnomon, can be linked to the two courts and lends 
credence to the suggestion that those passages, well-aligned in longitude, were recorded 
around a gnomon in the position indicated. This is difficult to prove though, especially in 

20 Koldewey R., The Excavations at Babylon, London, Macmillan, 1914 fig. 87. Shows cross-section 
through walls north of the Southern palace, with the roof of the palace shown schematically. Fig. 43 shows a
birds’ eye view of Southern Palace, with only some of the main walls rising above roof level.
21 The gnomon would be 7½ cubits above the roof, which would shift the line of the sun’s equinoctial 
shadow, from the centre of the passage, to the gnomon side of the passage wall.
22 In the XVIII century the Jai Prakash Yantra at Jaipur similarly had complimentary sections of the two 
bowls cut away to allow the observer to get his eye into the plane of the bowl. (Rajawat, D.S, Jaipur’s Jantar 
Mantar, Jaipur, date ?, pp 49/53)
23 Analysis of the depths below the top of the gnomon suggests there was a very slight preference for certain 
depths:  –0.5, -2.5, -3.5, -5, -6, -7, -9 and -11 cubits, but only 18% of passages were below -6 cubits.
24 Koldewey R & Wetzel F, Die Konigsburgen von Babylon, WVDOG54, Leipzig 1931,  Die Gebaude 39 
und 48 Nordlich vom Westhof. I am grateful to Helene Lambrinudi and Andreas Kindler for  translations 
from the German.
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the face of evidence that observers were employed by the Temple of Esagil, a long way 
south of the Southern Palace.25

 
Measurements

Finally we must consider what they were actually measuring..

The 656 passages were divided into six groups, according to the alignment of the two 
bodies in longitude, R.A or Azimuth and then whether they were observed in the east or 
west. For each passage the angle, in the vertical plane between the star and planet, was 
calculated. This angle has been termed the alignment angle and figure 7 shows how it 
varied with longitude. The two dashed curves are calculated values, assuming perfect 
alignment in longitude and with the lower of the two theoretical bodies at an altitude of 2°.

The rod, shown schematically in figure 8, would serve to check the alignment in longitude
and to measure differences in latitude, assumed to be at right-angles.

Conclusions

They were using an observatory, originally laid out for the accurate determination of 
azimuth in linear cubits (2.5° per cubit) measured along lines parallel to the meridian. The 
observer would move along non-circular arcs, around the gnomon, and would be at a 
varying distance from the top of the gnomon. Consequently the ratio of degrees (except 
azimuth) per cubit would also vary.

In attempting to work in ecliptic co-ordinates, they recognised the difficulties involved. To
reduce these to a minimum, they aimed to measure latitude only when they were sure the 
two bodies were closely aligned in longitude and this was easier close to the horizon. With
close alignment in longitude, the distance between the two bodies would represent their 
difference in latitude.

The layout of the area to the north of the Western Court seems to have been influenced by 
celestial and related phenomena. It is possible, but not proven, that the measurements 
could have been made there.

25 Hunger H. & Pingree D. op.cit p.139.
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Appendix A – worked example

Table 2.
1 Data from Collection A26

2 Star Planet Difference Planet less Star
or common value

3  Virgo Year –270/10/21 Mars
4 172.316 Longitude °27 172.052 -0.264
5 -1.906 Latitude ° 1.098 3.005
6 Up/Down cubits 1.5
7 Degrees Latitude per cubit 2.003
8 Calculated Values for two bodies

Spherical trigonometry
9 DTOG cubits - 1/Sine(row7) 28.608
10 172.197 R.A. ° (Latitude 32.5° and Obliquity of

ecliptic 23.728°)
173.156 -0.958

11 1.336 Declination ° 4.197 2.861
12 1.659 Altitude ° found by iteration 4.000 2.341
13 271.115 Hour-angle ° (transit 360°) 272.074 1.222
14 -0.528 Azimuth from 90° -2.432 -1.904
15 Sun’s Longitude > planet’s, so passage in

east & observer to west of gnomon
16 Calculated Positions – Observer’s eye

Plane trigonometry
17 -28.594 X cubits West (-) East (+)

=DTOG x Cos (row12) x Cos (row 14)
-28.512 -0.082

18 -0.264 Y cubits South (-) North (+)
=DTOG x Cos (row12) x Sine (row 14)

-1.211 -0.948

19 -0.828 Z cubits below horizontal
=Row 20 x Sine(row 12)

-1.991 -1.163

20 28.596 Horizontal radius from gnomon
(X2+ Y2)

28.538

21 Horizontal distance between two positions –
cubits

= (Diff X2 + Diff Y2)

0.951

22 Total cubits between two positions
= (Diff X2 + Diff Y2 + Diff Z2)

Compare with recorded 1.5 cubits row 6

1.502

23 Bearing in horizontal plane from North ° =
ArcTan(Diff Y/Diff X)

-85.042

24 Absolute alignment angle in vertical plane
between two positions °

= ArcTan(Diff Z/row 21)

50.726

26 A.J.Sachs & H.Hunger, Astronomical and Related Texts from Babylonia Vol I, p.351, recorded ‘Night of 
the 19th, last part of the night, Mars was 1 ½ above  Virginis’.
27 Longitude and Latitude of star and planet assumed unchanged over short difference in time
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Appendix B  - Earlier Developments in the Region.

1. Horizon Alignments.

The supposed temple at Tell es-Sawwan is an early example, from the middle of the 6th 
millennium BC, of a building oriented about 45° from the cardinal points.28 Later at 
Teleilat Ghassul (level IV) in Palestine there is a remarkable wall painting of an eight-
pointed star.from about –4000.29 

Other bearings are evident at Nabta Playa and Eridu.

Nabta Playa.

At Nabta Playa there are alignments of megaliths radiating around a central point. Their 
bearings are in three bands A (26/31°), B (117/122°) and C (127/131°).30 In turn these can 
be divided into narrower ranges, but here we will look at the positions of the individual 
stones as, with a fixed central point, it only takes one marker to define an alignment.

For each megalith, the differences in longitude (converted to great circle degrees) and 
latitude, from the central point, were divided by a factor.31  A unit of 0.00194°, 
corresponding to c. 215 metres, gave significant results for bands A and B.32 Of the 17 
positions no less than 8 had longitudes (expressed in linear units) equating to either whole 
or half units. Of the radii from the central point 8 equated to either whole or half units. 
This cannot be accidental. It would appear that they were determining positions by any 
two of the following: the radius from the centre and the easterly or northern component 
from the centre. In other words any two sides of a right-angled triangle.

Band C does not fit this analysis, which is not surprising as Malville et al concluded it was
‘problematic because of migration of the stones.33 However one stone (C5) is still of 
interest, as its unit co-ordinates are 2.7 (S) and 3.6 (E) and with a radius of 4.5 units from 
the centre. The alignment corresponds to the hypotenuse of a Pythagorean triangle with 
sides in the ratio 3, 4 & 5. In this case the unit would be 193.5m.(10% smaller than 
mentioned above). There is the possibility that one of the attractions for the placing of the 
central point (A) was its position relative to C5, which was described as a ‘dispersed 
cluster of blocks’ with a large original size of ‘about 2.0 x 1.5 x 0.3 m.’34

Bands A and B are largely confined to two 3.4° segments, between bearings determined 
by the ratio ½, the tangent of 26.6° and the sine of 30°, measured from due North (A) or 

28 Edwards I.E.S et al, The Cambridge Ancient History, Vol.1, Part 1, 1980, p.274, Fig. 21.
29 Edwards, op. cit, Vol. IV, p.522 and plate 14c.
30 Malville J.M. et al, Astronomy of Nabta Playa, in Holbrook J. et al, African Cultural Astronomy, Springer 
2008, p.137.
31 Brophy T.G and Rosen P.A, Satellite Imagery Measures of the Astronomically Aligned Megaliths at 
Nabta Playa, Mediterranean Archaeology and Archaeometry, 2005, Vol.5, No.1, pp15-24, Table 1.
32 The calculation is based on a great circle degree of 111 km. According to Petrie (Encyclopaedia Britannica
1951), the Egyptians had a khet (100 cubits) with a length of 52.37m. 4 khets would be 210m. Subdivisions 
smaller than a half, were probably tenths rather that quarters or thirds. There is some indication that the unit 
length rose from about 211m in –4400 to 218m in –3600. If we assume that the three A positions A1, A2 & 
A3 were all intended to be 4 units north and 2 units east of the centre, the units would range from 0.00185 to
0.00195°.
33 Malville op. cit, p.139
34 Wendorf F. and Malville J.M, The Megalithic Alignments  in Wendorf F. and Schild R, The Archaeology 
of Nabta Playa, 2001, p.494.
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due East (B). The two segments are 90° apart. The bearing of the rising sun at the winter 
solstice would have been 26.1°, south of due east, in -4700

From the table below, we can see that the rising of Sirius, the brightest star in the sky, 
would have aligned with the stones in the B band from about –4700 to –3700, but with a 
gap from –4200 of nearly 400 years.35 An adjustment of nearly 2° was then needed.   

Similarly the rising of Arcturus would have matched the megaliths in the A band from –
4450 to –3600, but with the largest gap from –4275 to –4100. To put these dates in 
perspective, it is thought the Egyptian Civil calendar with 365 days in the year was 
established around –4500.36

Table 3. Individual Megaliths at Nabta Playa
Ref Size Position Difference Linear measures

Lat. Long Lat Long Lat Long Radius Year BC
Cu.m. Degrees degrees Degrees

x 100
Gt. Circle

degrees x 100
units Units units

Centre A 22.5080 30.7257 Arcturus
A2 3.7 22.5157 30.7298 0.77 0.38 4.0 2.0 4.4 4450
A3 0.7 22.5155 30.7297 0.75 0.37 3.9 1.9 4.3 4430
A1 2.9 22.5158 30.7299 0.78 0.39 4.0 2.0 4.5 4400
A0 0.4 22.5136 30.7288 0.56 0.29 2.9 1.5 3.2 4275
A4 1.4 22.5149 30.7297 0.69 0.37 3.6 1.9 4.0 4100
AX 0.4 22.5164 30.7306 0.84 0.45 4.3 2.3 4.9 4075
A5 1.4 22.5131 30.7288 0.51 0.29 2.6 1.5 3.0 3920
A6 ? 22.5135 30.7291 0.55 0.31 2.8 1.6 3.3 3850
A7 0.5 22.5131 30.7289 0.51 0.30 2.6 1.5 3.0 3800
A8 1.0 22.5127 30.7287 0.47 0.28 2.4 1.4 2.8 3720
A9 1.0 22.5121 30.7284 0.41 0.25 2.1 1.3 2.5 3600

Sirius
B7 0.5? 22.5065 30.7283 -0.15 0.24 -0.8 1.2 1.5 4700
B6 0.1 22.5063 30.7288 -0.17 0.29 -0.9 1.5 1.7 4460
B5 ? 22.5061 30.7293 -0.19 0.33 -1.0 1.7 2.0 4200
B3 5.2 22.5059 30.7300 -0.21 0.40 -1.1 2.0 2.3 3820
B1 ? 22.5058 30.7303 -0.22 0.42 -1.1 2.2 2.5 3750
B4 ? 22.5060 30.7299 -0.20 0.39 -1.0 2.0 2.3 3700

C5 0.9? 22.5027 30.7333 -0.53 0.70 -2.7 3.6 4.5

This analysis indicates that 12 of the 17 megaliths in bands A and B were placed in three 
short periods of greater activity: –4450/ –4400 (4), -4100/-4075 (2)–3850/-3700 (6). Only 
two were placed in the 300 years from –4400 to -4100 (exclusive), which matches the 
three centuries, when the lowest number of samples were found for radiocarbon dating 
(Figure 8B). We can perhaps see this period as being one of low human activity in the area
and is consistent with the megaliths in the A & B bands being placed individually to point 
to the rising of Arcturus or Sirius.

The megaliths would also align with other less bright stars. For example Sirius and α 
Centaurus rose at the same point on the horizon around –4400 and thereafter markers 

35 Star data from SkyMap Lite 2005.
36 Wells R.A. in Walker C. (Editor), Astronomy before the Telescope, British Museum, 1996, p.34
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which had served previously for Sirius would serve for α Centaurus, as it moved lower in 
the sky.

The distance from the central point would vary as they sought integer values for linear 
measurements of any two of the radius, latitude or longitude, to determine the precise 
position

In general they seem to have been less tolerant of imprecision in the case of Arcturus than 
Sirius. Consequently there are more alignments for the former, possibly because the slow 
movement northwards of the rising of Sirius was already well known. Unlike Sirius, the 
rising of Arcturus was moving southwards, which may have attracted closer attention.37 
The first four alignments for Arcturus are near 26.6°, with a tangent of 0.5.  The difference
in bearing for these four was less than one degree, which suggests an aim for high 
precision. 

Eridu.

At Eridu not all the many levels of temple construction were perfectly rectangular and the 
early walls varied significantly in bearing.38 At Napta Playa the lines of stones, radiating 
around a centre, point solely to the eastern horizon, but at Eridu the walls can be seen as 
aligned between opposite points on the western and eastern horizons (Table 4).

Table 4. Walls at Eridu
Level Walls Stars

SE NW NE SW α CMa  α Cen α Lyr κ Ori
Bearings - degrees Year Longitude/Horizon Azimuth-degrees

18 30/21039 30/210
17 30/210 29/209 126/306 127/307 -5100 8/127
16 30/210 30/210 126/306 126/306 -4900 10/126 189/25
15 35/215 39/219 130/310 130/310 -4700 13/125 155/121 192/26 354/129
11 37/217 37/217 127/307 127/307 -425040 161/124 199/29 0/126
9 37/217 37/217 127/307 127/307 -3750 167/127 205/32 7/122
8 40/220 41/221 132/312 133/311 -3000 177/132 210/36
7 40/220 40/220 131/311 131/311 See footnote 31
6 53/233 53/233 143/323 143/323 -2700 181/226 220/323
Level 6

excluded
Corresponding Declinations

Degrees
18/7 rising 48/41 49/41 -30/-35 -30/-36
18/7 setting -48/-41 -49/-41 30/35 30/36 Zigpu stars in bold (on left)

We can distinguish four distinct groupings:

1. In each of the first three levels, 18/16, there is at least one wall oriented 30°/210°. This
suggests a subdivision of the horizon into 30° segments, with the two middle 
segments, totalling 60° in the east and west, corresponding to slightly more than the 

37 The rising of Arcturus moved 5° southwards in 850 years and of Sirius 4.7° northwards in 1000 years
38 The alignments were taken from Edwards I.E.W., Gadd C.J., Hammond N.G.L. (Editors), The Cambridge 
Ancient History, CUP, 1980, Figures 24 & 25, pp 335 & 338. Figure 24 shows levels 18 to 8 and although 
small has the advantage of having just one indication of north for all levels.  In figure 25, the other two 
levels, 7 & 6, each have their own north pointer. In this analysis level 7 with an indicated date around –3100 
would be out of sequence with level 8.
39 Three of the walls are aligned 30/210°, while one, the most northerly, is about 29/209° 
40 α Cma and α Cen would have had the same declination c. –4400, which falls between levels 15 and 11.
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annual range of the sun at the horizon.41 The 30°/210° alignment would complete the 
30° segments and would mark the centres of the two bands, which the sun does not 
reach and which are not circumpolar. The divisions between the major 60° segments 
lie either side of an alignment 60/240° or 120/300°.

2 In levels 11 and 9 the buildings are more closely rectangular and oriented in 
accordance with the angles in the simplest Pythagorean triangle, with sides in the ratio 
3,4,5.42 One wall at level 17 is similarly aligned.43 The same angles are also evident in 
the last level (6) but transposed. Six of the nine identified levels had walls in this or the
previous group.

3 Excluding levels 18 and 6, the remaining seven have at least one wall on a bearing of 
126/132° in the east and 306/312° in the west. These two ranges correspond to objects 
with complementary declinations of –30/-35° and +30/+35°, either rising in the east or 
setting in the west. The latter range would include what were later termed zigpu stars, 
which transit overhead and ideally had a declination of 30.5° at Eridu.44 The former 
range would, at different times, have included two of the brightest stars as at Nabta 
Playa.

Of the five brightest stars Canopus (α Car) and Arcturus would have been too low or too 
high, leaving Sirius, α Cen and Vega (α Lyr). The brightest star, Sirius, would have risen 
on a bearing of 127° in –5100 and 126° in –4900, when it would have been opposite, in 
longitude, to Vega and so six months apart. As Sirius rose, Vega was 21° above the 
western horizon. Later Sirius became too high, but α Cen would have been in range (levels
11, 9 & 8). This leaves a gap between levels 15 and 11, which could have been filled by a 
star of Orion, such as Saiph (k Ori), which, although not particularly bright, is part of a 
very obvious constellation and was also opposite the sun at the autumn equinox. An 
alternative would have been the brighter Rigel (β Ori)

With levels 17 and 16 two hundred years apart, we might estimate the date of level 18 as 
about –5300. Overall the range would be from then until level 6 in –2700. Postgate gives a
range from c.-5000 to c.-3000.45 Bienkowski and Millard give a span of ‘at least 1500 
years from 5500  BC or earlier’.46 The dates suggested here, although not coincident, are 
similar to those indicated by these two authorities. We can probably have the greatest 
confidence in those for levels 17 and 16, associated with the rising of Sirius, levels 11 or 9
and 8 associated with the rising of Rigel Kentaurus and level 6, associated with the setting 
of Vega.47

Egyptian 5-pointed star.

In the coffin lid tables (see below) the epagomenal stars are grouped together, but we 
should not rule out the possibility that at some earlier stage a single day was inserted into 
the calendar every 72 days.

41 In the middle of the 6 millennium BC, with the obliquity of the ecliptic 24.2°, the theoretical range would 
be 29.4° either side of due east/west.
42 The angles are 36.9° and 53.1°
43 It is possible that there may have been some lack of differentiation between the various levels.
44 Hunger H and Pingree D, MUL-APIN, An Astronomical Compendium in Cuneiform, Archiv fur 
Orientforschung, Horn, Austria,1989, pp 141/4. 
45 Postgate J.N., Early Mesopotamia, Routledge, London, 1996, p.25 caption to figure 2:2.
46 Bienkowski P and Millard A. Dictionary of the Ancient Near East, British Museum, London, 2000, p.107.
47 Other than for level 6, Vega seems to have been consistently mis-aligned by about 4/9°.
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The star hieroglyph with five spokes, implying the division of a circle into 72° segments, 
is known from the earliest Dynasties.48 It is not the easiest form to draw, so there must 
have been a good reason for its adoption.49 It is shown with one spoke vertical and the 
others on either side at angles of 72° and 144°. Table 5 gives details of five stars which, at 
Abydos around –3900, would have, almost simultaneously, been on the horizon. The two 
rising stars, λ Tel and 110 Her, are not particularly bright.

Table 5. Calculated for –3900 at Abydos (Lat. 26.2°)
Star Magnitude R.A. Declination Horizon

Azimuth
Diff

Azimuth
α UMi 1.86 322 58 343 71
γ Gem 1.93 19 0 271 72
α Car -0.62 66 -58 199 71
λ Tel 4.85 184 -34 128 71

110 Her 4.19 220 32 54 75

It would not have taken long to realise that α UMi spent about one fifth of a day below the
horizon and was separated from β UMa by a similar length of time. These two northern 
stars would have facilitated the visual subdivision of the area around the pole into five 
equal segments.

Therefore a plausible alternative justification for the hieroglyph would be that the spokes 
are separated by 72° in time. α UMi with a declination of 58.7° would rise and set 36° 
(time) from lower transit and 144° from upper transit. It would be 72° below the horizon 
between setting and rising, which would be 36° apart in azimuth.

α Umi would have had such a declination around –3900 and at the same time it and β 
UMa would have been 72° apart (R.A.). Other stars with about the same declination would
have been γ Dra and one of those in the Corona Borealis constellation. As α Umi set, α 
Car was also setting, which provides additional support for the five-pointed star being 
related to the rotation of α Umi around the pole.50 The suggested date of 
–3900 is commensurate with the –4500 given by Wells for the determination of the length 
of the year as 365 days.51

Table 6. Calculated for –3900 at Abydos (Lat. 26.2°)
Star Magnitude R.A Difference Declination Horizon

Azimuth
Time to

nearest transit
Long

approx
degrees degrees degrees degrees degrees degrees

α UMi 1.86 322 83 58 17 35 7
β UMa 2.34 34 72 62 8 17 57
α2 CVn 2.84 94 60 64 n.a. n.a
α CrB 2.21 167 72 56 21 42 140
γ Dra 2.24 240 73 61 12 5 186

48 Petrie H, Egyptian Hieroglyphs of the First and Second Dynasties, Quaritch, London, 1927.
49 Roaf. M, Cultural Atlas of Mesopotamia, Equinox, Oxford, 1990, p.70. shows a pictographic sign for a 
star with eight spokes around –3100.
50 At this time α Umi and α Car would have set 143° apart in azimuth.
51 Wells R.A.,  op.cit. p.34.
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A few decades later α UMi would spend 69° below the horizon, which would match the 
70 days spent in the duat, which traditionally is associated with the time that Sirius (α 
CMa) is too near the sun to be visible. Maybe there was more than one manifestation of 
the 70 days in the duat.

By this time the five-pointed star might have come to represent the daily passage of time, 
around the pole. The rising and setting of a Umi (R.A.322.5) could have served as a 
control, with the other four stars being a Uma (25), e Uma (105),  y CrB (171) and e Dra 
(253.5). The successive differences in R.A (in brackets). range from 62° to 83°, so would 
not have been at all precise.

In the Pyramid texts, the word for hours is determined by three stars.52 Sticking with α 
Umi, the other two could have been β Cva (86) and η Her (202.5). The differences in R.A 
would be 116.5°, 120° and 123.5° and, if correct, would indicate much greater precision. 
This is speculative, but seeks to explain how the measurement of time could have reached 
the high level of precision built into Kafre’s and later pyramids (see below).

Alignment of Mastabas at Saqqara 

The northerly alignments of all but one of the long sides of the mastabas of the 1st Dynasty
at Saqqara are in one of two groups 330/341° and 355/358°.53 The first is roughly parallel 
to the Nile, which along this stretch flows towards 335°. 

With this relationship to the river, it would not have gone unnoticed that around 
–2920, when α UMi was at upper transit, the setting of Corona Borealis was aligned with 
the river (Table 7). We see that constellation as a crown, but then it might have been 
likened to a bowl or the sign N41/42, a ‘well full of water’.54 On setting its ‘rim’ would 
have been level with the horizon on a bearing between 331/341°, matching the first of the 
two groups of mastaba alignments.55 At the same time α CMa would have been 2° below 
the horizon and about to rise.

Table  7.  Data for –2920 on a latitude of 30°, α Umi at upper transit
Star Magnitude R.A. Decl Horizon

Azimuth
Altitude

degrees degrees degrees degrees
ι CrB 4.98 190 52 335 0.1
ε CrB 4.14 188 49 331 -3.5
γ CrB 3.8 183 49 331 -5.0
α CrB 2.21 180 51 333 -4.9
β CrB 3.65 179 53 337 -3.0
θ CrB 4.06 181 55 341 0.1

α UMi 1.86 330 63 N/a 57.0
α CMa -1.44 47 -22 115 -2.0

52 Clagett M, op.cit. Vol.II p.49. He presumes that this was linked to the Civil Calendar with 12 months in 
three seasons.
53 One mastaba is aligned 10° west of north, about midway between the two groups.
54 Gardiner Sir A., Egyptian Grammar, Oxford University Press, 3rd Edition, 1969, p. 492.
55 Over the years in question, precession would not have played a significant role in the spread of the 
mastaba alignments.
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2. A Portable Sketch from Saqqara – Pythagorean triangles and a spiral.

From Dynasty 3 (c.2600 BC), we have a sketch of an arc, which Marshall Clagett 
described as ‘a kind of descriptive geometry born of practical measurement…’. 56 There 
may be rather more to it than that. 

The crucial unknown is the distance, assumed to be equal, between the Y ordinates. 
Clagett followed Wolff in taking it to be 28 digits or 1 Royal cubit. However, if it was 
actually 24 digits, the co-ordinates would be 0,98, 24,95, 48,84, 72,68 and 96,41.57 The 
sketch then incorporates three Pythagorean triangles, with their long sides parallel to the X
axis (Figure 9):

14, 48, 50 (7,24,25) linking points 1 and 3,
54, 72, 90 (3,4,5) linking points 2 and 5,58 
30, 72, 78 (5,12,13) linking points 1 and 4.

The coordinates (96,41) of the fifth point suggest that there was a fourth triangle with 
sides 9,40,41 below it.

An Egyptian architect with Pythagorean set squares could delineate curves in integer 
rectangular co-ordinates, which a builder could readily follow. In this example the 
architect drew a rough arc on a piece of limestone, to which he added his previously 
calculated Y ordinates.

But what was the curve he had in mind? Points 1,3,4 & 5 lie close to a circle, but its centre
(–10,-30) is well away from the vertical axis through point 1, and point 2 does not fit.

Two other possibilities are:

1.The curve is an approximate protractor for angles 15°, 30°, 45° and 67.5°.

2.The curve is part of a similar spiral to that used at Babylon, where the X co-ordinate is 
proportional to the angle below the horizontal at point 1 (see Table 8).59 With the 
exception of point 3, the others are close to a ratio of 7.5° per cubit of 24 digits. This 
value, known as a part, or 48th of a circle, belongs ‘to an early sequence of primitive 
angular measures’, according to Neugebauer.60

The 3,4,5 triangle for points 2 and 5 fits the second alternative better than the first. (see 
last column in Table 8).

56 Marshall Clagett, Ancient Egyptian Science, Vol. III, 1999, pp. 78/79, 109 note 68 and 462. The curve is 
not a single circular arc as the radius for the points 1, 2 & 3 is less than that for points 3, 4 & 5. 
57 The Egyptian short cubit contained 6 palms and 24 digits.
58 The 3,4,5 and 5,12,13 triangles intersect at 45,79.25 and 60,68. The 11 digits just below point 2 are 
divided precisely into 4,3,4 digits. The triangle of 3,4,5 digits would be, in palms, ¾, 1. 1 ¼, which is similar
to how it appeared in the very much later Baylonian tablet Plimpton 322 (see below).
59 This is a similar arrangement to that at Babylon for measuring azimuth, where the ratio was 2.5° per cubit.
60 Neugebauer. O., A History of Ancient Mathematical Astronomy, Springer-Verlag, 1975, Part Two, p.671.
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Table 8. Analysis of Five Points in Sketch
Point X Y Angle from

Vertical at
origin 0,0

Assumed
Target

Difference Angle below
horizontal at

point 1

Divide X by
3.2

Difference

digits digits Degrees degrees degrees degrees digits degrees
1 0 98 0 0 0 0 0 0
2 24 95 14.18 15 -0.82 7.1 7.5 -0.4
3 48 84 29.74 30 -0.26 16.3 15 +1.3
4 72 68 46.64 45 +1.64 22.6 22.5 +0.1
5 96 41 66.87 67.5 -0.63 30.7 30 +0.7

Spirals are known in Egypt from the 1st and 2nd Dynasties, so it is worth examining how 
they might relate to the Horus Eye Fractions, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, which were 
represented by parts of an eye and used for volumes of grain.61 The first quadrant of an 
Archimedian spiral would have an area of just under 32 square units, if the radius for the 
90° position was 11 units.62 This area would split into two halves along a line parallel to 
the short axis, 5 units from the origin and a similar line 11/10 units from the origin would 
delineate 1/16th of the total area (Figure 9b). Between these two lines there would remain 
7/16ths, of which 1/4 would be represented by a circle with a radius of 1.6 units.63 The 
form of the individual fractions are roughly similar to the ancient glyphs, except for 1/8 
and 1/32 above and below the circle respectively.  

Problem 10 in the Moscow Mathematical Papyrus refers to a basket with an area of 32 and
to this being half an egg shell.64 It seems therefore that the egg consisted of the two initial 
counter-rotating quadrants of Archimedian spirals, so that in terms of area an eye was half 
an egg, divided lengthwise and a basket was also half an egg, presumably with the egg 
divided at right angles.65 Evidently the units were not the same!

The basket also had an opening, presumably a diameter, of 4.5 units, which using the 
Eyptian method of calculation would have an area of 16 sq.units, so was twice the size of 
the 1/4 Horus eye fraction and consequently was 1/4 of the egg. If the opening had a 
depth, rather than a diameter, of 4.5 units then it would equate to the distance from the 
origin to where the egg was widest.

3. Hierakonpolis (with a reference to Newgrange in Ireland), Pyramids and 
Horizontal Hour-lines.

It will be shown below that, by the Pyramid age, they had mastered the use of horizontal 
dials to measure time. At Hierakonpolis they may have already started on that long 
journey of discovery.

61Petrie H, Egyptian Hieroglyphs of the First and Second Dynasties, Quaritch, London 1927. Plate XXXVi 
shows 5 spirals (855/859) from the Royal tombs and Hierokonpolis. They rotate both clockwise and 
anticlockwise, so could readily have been put together to form an egg. She also showed eyes (plate III) with 
one (64) enclosing a circle.
62The area of the first quadrant is πn2//12, where n is chosen as 11. This  is the smallest integer value that has 
another integer, 5, for the division of the total area into halves and another integer, 3, for the distance from 
the origin to the centre of the circle. It could be readily rescaled.
63In the drawing it is shown as touching the lower edge of the eye, but there ought to be a small gap to allow 
the two areas either side to count together as 1/32.
64Gillings R.J., Mathematics in the Time of he Pharaohs, Dover, 1972, p 195
65Divided along a line parallel to the short axis produces two very different halves – one pointed and the 
other rounder. In this regard we should remember there were other similar Egyptian signs which look similar
to eggs and/or baskets.
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Hierakonpolis

The site (HK29) has a near- oval courtyard with a hole for a mast near the eastern apex 
(Figure 8c).66 Alongside the southern side there are four large post-holes, almost perfectly 
aligned on a bearing of 112.7°/292.7° (67.3° either side of the meridian), which, further 
east, crosses features 5 and 6 to meet the meridian through the mast, 7.6m away. 
Assuming this junction corresponded to the 'pole', with the mast serving as a gnomon, we 
can calculate its height as 3.56m. 67            

These are the basic elements of a horizontal dial, with the line of large post holes 
corresponding to 80° (time) from the meridian.68 Furthermore the hour-line through where 
the shadow of the mast cast by the sun, at the two solstices, enters the courtyard is 72° 
(time) from the meridian.69  Similarly for declinations of +17° & -17° the shadows of the 
sun would have been on an hour-line corresponding to 75° (time) from the meridian when 
they entered the courtyard. This is remarkable as it implies the outline of much of the 
courtyard was designed to give this result. However it must be treated with some caution, 
as the outline shown in Fig.8c is schematic. More detailed work is required to determine 
over what range of declinations this relationship holds true, using the actual outline.70

They were perhaps at an intermediate stage, when they had recognised the importance of 
the 'pole' on the ground and how celestial bodies circled around it, but were not thinking in
terms of a fixed length of hour. With that caveat, it is worth considering how the device 
might have functioned.

From the height of the mast we can determine the line of the equator, 1.67m to the north of
the mast, which meets the line of large post-holes near the western end.71 The eastern end 
corresponds to a declination of 17°. The shadow of the rising mid-winter sun travels from 
west to east, close to the central axis of the court, leaving a significant area further north, 
outside the range of the sun. The northern limit of the courtyard approximates to the path 
of a body with a declination of -35°, implying that they were using the courtyard for 
observations of stars at night. At the other extreme there are 'features' between 
declinations 24° & 35° and between 35° & 65°, with the latter being at the limit (64.9°) for
the circumpolar stars that never set.  

Around -3400 the obliquity of the ecliptic was almost precisely 24° and the declination of 
Sirius was -24°. so its path would be similar to that of the sun at the winter solstice.72 This 

66Nekhen News 20.  The western apex of the courtyard would point to the rising of Sirius and the mid-winter
sun.
67The height of the gnomon is given by d x Tan (latitude), where d is the distance between mast and 'pole'. 
We cannot rule out the possibility of there being two heights,: one for the shadow of the sun and another 
about 1.5m higher for the stars, which would allow the observer to stand upright, rather than having to put 
his eye on the ground.
68The calculation is Tan (time) = Tan (hour-angle)/Sin (latitude), which gives 79.93°.
69The sun's altitude would have been 4.77° and 25.35° at the winter and summer solstices respectively. At 
the winter solstice Tan(4.77) =1/11.98, indicating that the distance from the mast to the end of the courtyard 
was 12 times the height of the mast. 
70It does not hold as far as ±35° declination.
71The calculation is height x Tan (latitude).
72Data from SkyMap Lite 2005. Sirius and the sun would be c.132° (R.A.) apart. Two bright stars with 
declinations similar to that of the sun at the Summer solstice were α Leo and α Aur with R.A. 74.3° and 
356.8° respectively.
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occurrence may also be reflected in the design of the passage-grave (c. -3200) at 
Newgrange in Ireland.73

The 45° hour- line would pass through the south-western corner of the 'platform' and 
correspond to 67° (time) from the meridian and on the north-east it was bound by the 
hour-line for 60° 74   The 'platform' would provide an observation point to watch what was 
happening in the courtyard.

The two green lines show the simultaneous positions of observers of Adhara (ε CMa, at an
altitude of 10°), Sirius (α CMa) and Procyon (α Cmi)  in one line, and of Betelgeuse and 
Rigel (α & β Ori) in another, nearer the meridian.75 Together they give an impression of 
the device in use.                                                                                                                     

The 'pole' is in an unexcavated area and the mast, ignoring the possibility of it being 
higher for use at night, can hardly be described as tall (see footnote 67).76  Nevertheless 
there is a reasonable overall fit with the outline of the courtyard.

Pyramids and Horizontal Dials

In the Pyramid Texts, on the walls of 5th and 6th dynasty pyramids, Utterance 251 includes 
‘O you who are over the hours…..’ and Utterance 320 ‘The King has cleared the night, the
King has despatched the hours….’.77  ‘In both passages the word for hours (wnwt) is 
determined by three stars, suggesting to us that the most primitive meaning of “hours” was
“nighttime hours”.78 The more precise measurement of time by the stars was clearly 
established by the 5th Dynasty (2500/2350 B.C.. We will see that they were interested in 
the line of the equator at an early date, presumably sparked by the almost perfectly straight
line, from west to east, of the shadow of the sun at the equinoxes. When time-keeping by 
the stars became more important it would have been convenient to have had plenty of stars
close to the equator and the number peaked around -2300 (Table 9).

73O'Kelly C., Concise Guide to Newgrange, Houston, Cork, 2003 and see www.Mythical Ireland.com. There
is also a book (not seen) The Newgrange Sirius Mystery by E.A. James Swagger.
74The western side of the platform appears to be oriented to true north.
75The first three stars, Adhara, Sirius &Procyon, can be considered as part of the Egyptian constellation of 
Sothis.
76   Wilkinson R.H, The Complete Temples of Ancient Egypt, Thames & Hudson, London, 2000, p.17 
describes it as a 'tall pole'.
77Faulkner R.O., The Ancient Pyramid Texts, OUP, 1969. The earliest surviving example is in the pyramid 
of Unas (2373 BC) bur no single pyramid contains the whole text.
78Clagett M., op.cit. Vol.II American Philosophical Society, Philadelphia, 1995, p.49. The Egyptians 
employed a year of three seasons aligned with the rise and fall of the Nile, so it is tempting to assume the 
three stars were separated by 120°. This may not be correct as there is another small group of three (α Libra, 
β1 Scorpio, ε Ophiuchus) each separated by close to 15° (R.A), ideal for establishing an hour standard.
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                   Table 9. Stars with magnitude <5 near equator79

Star RA Magnitude
-2300 -2500 -2450 -2400 -2350 -2300 -2250 -2200

Declination - Arc Minutes
δ3 Taurus 0.6 4.29 -2
ε Taurus 0.6 3.53 -2 15
11 Orion 18.7 4.65 -12 4
15 Orion 19.8 4.81 -11 4

134 Taurus 29.8 4.89 -5 10
28 Monoceros 65.4 4.68 -7 0

TYC 4857 2151 1 72.1 3.91 -12 -7 -2
27 Hydra 86.8 4.80 -12
υ2 Hydra 98.4 4.60 12 9
y Hydra 145.2 2.99 5 -9

β1 Scorpius 184.0 2.56 9 -7
ω2 Scorpius 184.1 4.31 -4
ω1 Scorpius 184.1 3.93 6 -11
ν Scorpius 185.6 4.00 9 -8

ψ Ophiuchus 188.2 4.48 -11
χ Ophiuchus 189.2 4.18 17 0

TYC 6221 904 1 192.8 4.91 4 -12
η Ophiuchus 200.0 2.43 2 -14

ο Serpens 208.1 4.26 7 -8
ξ  Scutum 219.0 4.66 7 -6
α Scutum 222.1 3.85 4 -9
η Scutum 227.9 4.83 7 -14
12 Aquila 229.1 4.02 9 -3
λ Aquila 230.4 3.43 5 -6
ι Aquila 238.8 4.36 6 -3

η Andromeda 320.3 4.40 -3 10
λ Aries 334.3 4.79 -6 8
α Aries 336.3 2.01 -14 1
ξ Aries 352.1 4.00 -8

Number of Stars 4 4 5 11 13 9 8
Closest pair or 0 -3/+6 -2/+9 -3/+15 -11/+1 0 -6/+6 0

Balanced pair -4/+6 -11/+10 -15/+14 -11/+10 -7/+7 -6/+6 -3/+4

Figure 9c with four pyramids attributed to Sneferu (3) and to his son Khufu (1) indicate 
that they were conversant with the design of a horizontal dial with, by the time of the 
Great Pyramid, half-hour divisions. Earlier the 45° hour-line, passed under the centre of 
the satellite pyramid and met the equator on the enclosure wall at Meidum, while at the 
North or Red pyramid it was 48° hour-line. There the northern and southern corners of the 
pyramid coincided with 36° and 72° hour-lines, suggesting that they were experimenting 
with an 'hour' of 12°. The 30° hour-lines met the equator as it crossed the base of the Bent 
pyramid.80  Curiously, in plan view, the bend on the southern side of the Bent pyramid 
coincided with the 30° hour-lines, in a similar manner to the upper missing part of the 
Meidum pyramid.81

The inclination of the plane of the equator would have been observable where the shadow 
of the sun crossed an enclosure wall at the equinoxes.  Along the meridian it would be 
possible to measure the distance of the equator from the centre of a gnomon and from its 
known height calculate the length of the meridian in the equatorial plane and from that 
length deduce the distances along the equator for any time from the meridian.82 Drawing 
lines from those points to the pole would give the respective hour-lines.

79 Data from SkyMap Lite 2005
80Although these points influenced the design of the complex, observations could not actually be made at 
many of them. For example at the Bent pyramid an observer at a corner of the base could not see the apex.
81At Meidum the pavement surrounding the enclosure wall suggests that this pyramid may have ben given 
over to the study of the sky. If this was so, could it have been partly dismantled to discover what would 
happen with a 'bent' pyramid?
82The calculation being Length of the meridian in the equatorial plane x Tan (Time from meridian)
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For the range of geographic latitudes of the pyramids, we would to-day happily assume 
they were all on 30° when setting up a garden sun-dial, but the size of the pyramids makes
this questionable. Table 10 shows the distances along the equator for various times to the 
meridian. For times of 60° or more there are noticeable differences in the cubit values, 
although using the same values for all pyramids would not introduce a major error in time 
measurement.83

The final column in Table 10 shows the rounded distance in units of 28.87 cubits, which 
as shown below seems to have been used for some aspects of the layout of the pyramid 
complex of Pepi II.

Table 10. Distances, in cubits, along the equator for successive half-hours from transit, 
assuming a pyramid with a height of 100 cubits (52.5m) and geographic latitudes of 
Meidum and 30°, near Abu Roasch. 

Latitude(°)
Tangent

Sine

29.388 
0.5632
0.4907

30.000
0.5774
0.5000

30.000
cubits/28.87

30.000
rounded units of 

28.87 cubits

Time from meridian
(°)

cubits cubits units units

7.5 15.110 15.202 0.527 15/28

15 30.752 30.940 1.072 15/14

22.5 47.539 47.829 1.657 12/3

30 66.262 66.667 2.309 2⅓

37.5 88.065 88.603 3.069 3

4584 114.769 115.47 4.000 4

52.5 149.570 150.484 5.212 5¼

60 198.785 200.000 6.928 7

67.5 277.077 278.769 9.627 92/3

75 428.323 430.940 14.927 15

82.5 871.756 877.082 30.288 30

Equator distance 56.320 57.735 2.000 2

Pole distance 177.558 173.205 6.000 6

The pyramid of Khufu shows their mastery of horizontal dialling, with the Queens' 
pyramids and several boat pits positioned in close relationship to hour-lines, in half-hour 
divisions.85 The northernmost boat pit in the north-east is close to the junction of the 
equator and the circle around the pyramid, where the altitude of the sun or star would 
equal the slope of the corners. This is an early intimation that this altitude was of 
particular interest.

Figure 9d has another four pyramids, with Khafre's, Menkaure's and Sahure's 
demonstrating an interest in the area to the east of the pyramid. In Khafre's the times for a 
celestial object on the equator to reach the altitudes of the corners and the sides would be 
2.5 and 1.5 hours from the meridian. That of Userkaf does not follow this trend to the east 

83Using 428.33 cubits along the equatorial line  (correct for 75° to the meridian on the latitude of Meidum) 
on a latitude of 30° would give a time of 74.91°, a difference of 22 seconds.
84The cubit values are the same as the length of the meridian in the equatorial plane.
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with most ancillary structures being around the pole, but it is the first of the pyramids with
a standard slope of 53.13°.86 Its enclosure wall on the east is close to the pyramid, but with
room for the point where the altitude, along the equator, is the same as the corners of the 
pyramid, marking one end of the standard hour. The other end of this standard hour was 
within the pyramid and therefore inaccessible. However it would be clearly signalled by 
the disappearance of the shadow of the pyramid.  At Menkaure's and Sahure's this point on
the equator also coincided with an azimuth of 45°, which too would be visible outside the 
pyramid.

The pyramid of Sahure has an enclosure wall indented beside the equator and the 
lengthening evening shadow would run from 36° to 53°, a range of 17°, with room for a 
standard hour now completely outside the pyramid.87 The same general layout to the 
north-east of pyramids endured for some 550 years until Senworset I.

Figure 9e shows another four pyramids, all with a similar layout around the north-east 
corner and their details are summarised in the following table, which also includes those 
of Kafre, Sahure, Pepi II (ignoring the girdle around the base) and the much later 
Senworset I (-1965/-1920).

Table 11.

Pyramid Times for shadow leaving the
pyramid and meeting the enclosure
wall along the equator and the range

Times for shadow leaving the
pyramid and meeting the enclosure

wall on the North and the range

Times to transit when
altitude the same as the

slope of the corners/ sides

Difference from
one hour

degrees degrees degrees seconds

Kafre 33/n.a 33/n.a 22.48/37.58 +23

Sahure 36/53 - 17 36/42 - 6 27.61/41.73 -211

Djedkare 33/49 - 16 33/45 - 12 22.72/37.73 +1

Unas 31/50 - 19 31/46 - 15 16.35/32.95 +385

Teti 33/52 - 19 33/48 - 15 22.69/37.71 +5

Pepi I 34/51 - 17 34/47 - 13 22.72/37.72 +1

Pepi II88 33/51 - 18 33/45 - 12 22.74/37.74 -1

Senworset I 37/52 - 15 37/46 - 9 29.2/42.98 -294

85The Queens' pyramids were positioned in relation to the centre on triangles with sides in the ratios 
11,60,61, 1,2,√5 & 3,4,5, scaled up so that the long side was 195 cubits or 102.4 m, using 525mm for the 
length of a cubit. This compares with 524mm, deduced by Petrie  W.M.F,, Encyclopaedia Britannica , 1951, 
Vol. 15, p.144.
86Over the following 300 years the same slope was used in another six pyramids, if one includes that of 
Djedkare-Isesi. which was originally omitted because of small inconsistencies in its dimensions and the 
slope of its sides. Its design is important because it incorporated the standard slope of 53.13° (as in a 3,4,5 
triangle) and a height of 52.5m (100 cubits) with a layout, around the north-east corner, similar to that of 
Sahure. Five of the standard pyramids had the same dimensions, a height of 100 cubits and a base side of 
300 cubits.
87What drove their interest in an 'hour standard', which can be traced to the pyramids of Khafre and 
Menkaure? Although they could accurately calculate time along the equator, they would not get precisely the
same results, in practice, if two pyramids were significantly apart in longitude. At Giza, the three pyramids 
have longitudes: Khufu (31.1342°), Kafre (31.1308°) and Menkaure (31.1283°), a range of 21 seconds. This 
might have been a source of frustration, in the absence of any notion of a spherical earth. An 'hour standard' 
would have had almost precisely the same length in cubits for all three pyramids, after due allowance for 
their different heights.
88The measurements ignore the girdle around the base of the pyramid, the effect of which is discussed below.
With the girdle, the time on the equator, at ground level, would be reduced from 18° to 14°, insufficient for 
an hour.
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For seven pyramids, from Sahure's to Senworset's, the layout in the north-east corner 
could accommodate an hour standard along the equator, but only in those of Unas and Teti
could the same hour be measured along the northern enclosure wall.89 

Previously it was noted that the standard pyramids had a built-in standard hour along the 
equator, when the celestial body was at altitudes equalling the slopes of the sides and 
corners.90 This was part inside and part outside the pyramid. The details are summarised in
the last two columns in the table above.  This characteristic was the result of the adoption 
of the standard pyramid, with a slope of 53.13°, which, if built on a latitude near 29.845°, 
would create this very accurate standard hour.91  It had ceased to be of importance by the 
time of Senworset I.

Pyramid of Pepi II

In the last and most southerly, that of Pepi II, we can ‘see the plan of the standard pyramid
complex in its final and most developed form’.92 However it had an added girdle, 6.5 
metres (12.4 cubits) in width, which increased the sides of the base from 150 to 174.8 
cubits.93 Consequently, although included in table 11, because of the added girdle around 
the base, a standard hour of 15° could not be accommodated at ground level (fig 9a).
In relation to the main pyramid, those of the wives were positioned using Pythagorean 
triangles (Table 12 and Figure 9a).94

                Table 12. Pepi II - Pyramids of wives
Pyramid Centre

Measured on plan
Pythagorean

Triangle & (scaling)
Calculated centre

West North West North
cubits cubits cubits cubits

 Iput II 160.8 119.1 3,4,5  (40) 160 120
Neith 66.4 155.8 5,12,13 (13) 65 156

Wedjbeten 79.4 152.4 8,15,17 (10) -80 -150

On the other hand, some distances in the Pyramid complex appear to be based on a 
standard, related to the distance of the equinoctial line from the centre (Table 13). 

89It is assumed that all measurements started at the time the equatorial shadow appeared out of the pyramid.
90Bremner R.W., Letter to BAA Journal, Vol. 127-1, February 2017, page 55. D. Rawlins pointed out the 
inconsistent dates in that original letter.
91The calculations both at the time and now ignore the effects of geocentric parallax.
92 I.E.S. Edwards, The Pyramids of Egypt, Penguin, 1993, p.181. 
93 Edwards, op.cit. p.188. The girdle may have been required for reinforcement. We do not know its height, 
but the width was 6.5m or 12.4 cubits. On the small plan the side measured 172.5 cubits, compared with the 
calculated value of 174.8 cubits, a difference of ca. 1.3%. This gives a rough idea of the precision of the 
measurements. 
94With the four already noted above (p.15), two at Khufu's and one at Pepi II's, brings the total of different 
Pythagorean triangles to 6: 3,4,5-5,12,13-7,24,25-8/15/17-9/40/41-11/60/61.
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             Table 13.  Pepi II - Grid of c. 28.8 cubits
Distance

cubits
Divisor Unit of Measurement

cubits
Eastern Wall of Mortuary
Temple to centre pyramid

259.8 9 28.9

Girdle side 172.5 6 28.7
Satellite Pyramid N 114.7 4 28.7
Satellite Pyramid E 72 2½ 28.8

Diagonal Open court 58.1 2 29.0
Diagonal of Iput II 56.7 2 28.4

Equinoctial shadow line 57.36 2 28.7
Distance on equator
between 35° & 50°

& between 40° & 50°
56.7
40.7

2
√2

28.3
28.8

This suggests that a unit of about 28.8 cubits was used for some aspects of the layout, with
12.5 of these units being 360 cubits. Today we might be tempted to think of it as 90/ π 
(28.6) and a circle with this radius would have a circumference of 180 cubits with a ratio 
of 2° per cubit, one of the ancient norms.95 Then it may well have been derived from 50/√3
(28.87), which agrees with the calculations in Table 10.96 

In reality none of the standard 3,4,5 pyramids is precisely on a latitude of 30° and 
therefore their values are slightly different. 

The equatorial line coincides with the northern wall of the mortuary temple, but the hour 
standard, identified in table 11, cannot be accommodated, as already mentioned. On the 
other hand, before the addition of the girdle around the base of the pyramid, an hour, from 
35° and 50° after transit, would fit neatly within the open area immediately north of the 
sanctuary. In that position it would serve for objects in the western sky, using the apex as a
foresight. In the narrow gap between the pyramid and the enclosure wall in the west, a star
could only be observed close to 35° before transit (ignoring the girdle).97  In the pyramid 
of Pepi II, the girdle would reduce the level area along the equatorial line. It is suggested 
that, to overcome this setback, they opted for a short hour of 10° or 40 minutes. For 40° 
and 50° from transit the observer would be, respectively, 96.7 and 137.4 cubits from the 
meridian, with the difference being close to an average of 4 cubits per 1° of time or 1 cubit
per minute.98 A short hour of 10° appeared later in the diagonal star tables on coffin lids.99 

The sanctuary would restrict observations of stars above the equator, but to the south the 
absolute limit would be –18° declination on the meridian.100 Away from the meridian such 
a body could only be observed from outside the enclosure wall. Within it and north of the 
95 90/π equals 28.8, if π is taken to be 25/8. Intriguingly at just over 72° from the meridian, the distance is 
360 cubits and 1st, 2nd & 5th Dynasty representations of stars show them with five points (see footnote 48). 
96 The later Shadow Clock, described in the Cenotaph of Seti 1 is different, as it appears to use hours of 60 
minutes. (Clagett op. cit. pp.463/470 has a translation).
97 In round numbers stars on the equator could not be observed within 35° of the meridian, mimicking the 70
days passed in the ‘duat’. See Clagett op.cit p. 364/5, referring to the Book of Nut. 
98 Expressed in units of 28.87 the two values in cubits become 3.34 and 4.76 The ratio would be exactly 1 
cubit per minute, on average, between 39.5° and 49.5° from transit, with the distances from the meridian 
being 95.0 and 135.0 cubits.
99 Wells R.A., op.cit., pp 37/8. The earliest of these tables date from the 9th Dynasty, soon after the reign of 
Pepi II.  
100 The declination of Sirius would only have risen to –18° by 1425 BC. 
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pyramid the declination would be around –12°, which, crossing the meridian 90 cubits 
north of the apex, avoids the girdle and allows observation along the length of the 
enclosure wall. Significantly the causeway for Khafre’s pyramid had an azimuth, directed 
at the rising of a body with a more precisely defined declination of –11.8°.101 The sun 
would have such a declination two months from the winter solstice and would delimit a 
season of the four months with the 120 shortest days.102 A calendar for an Egyptian year of
three seasons could thus be kept in step with the sun, with the other two seasons being 
either side of the summer solstice. 

At night, four bright stars were in the band between 0° and –12° of declination (Table 14). 
Sirius itself was too low, but the Sothis constellation included her head-dress, so δ 
Monoceros, with a similar R.A., is taken as the exemplary star. One of the 36 ten-day 
decans is ‘Red One of  Khenett’, identified as the red α Scorpio (Antares, Rival of Mars). 
Between it and δ Monoceros there were 136 days and 13 decans, which are sufficiently 
correlated to justify the identifications.

    Table 14. Bright Stars with declinations between 0° & -12°

Star103 Magnitude Equatorial
Co-ordinates 

-2300

Julian Day
Re-based

Diff
R.A.

T class
10 day decans 104

R.A. Decl. days degrees No. Re-based
α Taurus 0.75 11.7 -1.1 -179 -176 24? -18?
y Orion 1.64 26.3 -7.5 -164 -161 26? -16?
α Orion 0 33.0 -4.1 -157 -155 27? -15?

δ Monoceros 4.15 53.8 -4.3 -136 -134 29 -13
α Scorpio 0.88 187.8 -7.8 0 0 6 0

These stars are close to the equator, where we have seen that the distance between 40° and
50° from transit is just over 40 cubits and for bodies with a declination of –12° it would be
38 cubits between 30° and 40°.105 In both cases it would average about 1 cubit per minute. 
The Egyptians were clearly able to measure time (months, days and hours) rather better 
than is usually acknowledged.

4. Coffin Lid Tables in Egypt.

Two centuries after the building of the last standard pyramid we have the first coffin lids 
with astronomical tables. These tables list 36 decan stars, at 10-day intervals, plus 5 
epagomenal days, in accordance with the Egyptian calendar. We have seen above that they
were using an hour of 60 minutes, but the girdle added to the pyramid of Pepi II, may have
forced them to employ a shorter hour of 40 minutes. They would then have had to rework 
earlier schemes and, on this basis, we suggest dating the surviving coffin lid tables to 
about –2250.

The majority of the coffin lids of known provenance come from Asyut on a latitude of 
27.23°, which has certain interesting properties. The sun at the solstices would rise 27.16° 

101 Nell, E. and Ruggles C.,The Orientations of the Giza Pyramids and associated structures, University of 
Leicester, version 2 – 15th March 2013, p.37, Table 12.
102 The sun’s R.A. being 208° & 332° with a difference of 124°.
103 Star data from StarMap Lite 2005.
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from due east, which is almost identical to the height of the pole.106 Less obviously the 
azimuth, swept by the sun at the two extremes, would be 153° and 207°, if measured from 
rising to 270°, which closely matches the time of the sun above the horizon, 154° and 
206°. A change of 1° azimuth corresponded, on average, to 1° time above the horizon. 
They had the means to measure time for celestial bodies with declinations between +/-30°.

Table 15. Asyut - Latitude 27.23° Rising Azimuth and Time above Horizon
Rising Azimuth

from  North
Declination Azimuth swept

to 270°
Time above horizon

Degrees degrees degrees degrees
50 34.9 220 222
60 26.4 210 210
70 17.7 200 199
80 8.9 190 189
90 0 180 180
100 -8.9 170 171
110 -17.7 160 161
120 -26.4 150 150
130 -34.9 140 138

Symons allocates the 19 known coffin lid tables to one of two classes K(7) and T(12), in 
which the Sothis constellation, with Sirius, is placed 36th and 29th respectively. The five 
epagomenal days follow the 36th decan, so were respectively either 10/15 or 80/85 days 
after Sirius.107 In what follows we will examine the epagomenal stars in the K class.108

The possible concept behind the scheme is that for 360 days there was a selection of 36 
stars which progressed through 360° in R.A. but only 355° of longitude.109 In the next five 
days longitude would reach 360°, but R.A. would change very little.

104 S. Symons, S, A Star’s Year in J.M. Steele (editor), Calendars and Years, Oxbow, 2007. p.8 (Table 5). 
Decans 24 and 25 refer to the Arm [of Orion]. In the K class (Table 6) the difference, between Sothis and the
Red One, is 14, not 13, decans.
105 For comparison, the distance for the original hour standard was 41 cubits for 60 minutes. The distances 
along the equatorial line being 48.3 and 89.2 cubits for altitudes of 53.13° and 43.314°.
106 Assuming 23.95° for the obliquity of the ecliptic.
107 Locher has identified the sceptre of Sothis on a coffin lid as representing a line of stars from β Col to η 
Lep, which implies a year beginning, not ending, with Sirius – see Von Bomhard A-S, The Egyptian 
Calendar, Periplus, London 1999, p. 23, Fig. 17. Possibly the image represents another tradition.
108 Between Crux and Corvus there are many stars where those for the epagomenal days in the J class might 
be found. 
109 If R.A. and longitude had the same value, the stars would lie on a circle mid-way between the ecliptic and
the equator with their declinations and latitudes having the same absolute value but with the opposite sign.
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Table 16. Possible Epagomenal Stars (a/e) with First and Last Decan Stars for –2250
(Last Column – azimuth differences with δ Cma on meridian and 5 days later)

Star Number
K class

Mag. R.A. Decl. Long. Lat. Day Azimuth from
meridian

degrees degrees degrees degrees degrees
α Cma 36 -1.44 55 -20 46 -39 0

Calculated
Ideal a 65 -26 56 -47 10
Ideal 1 65 -8 61 -29 15

Possible Stars meridian +5 days

δ Cma a 1.83 65 -28 55 -49 10 0 5.1
TYC6537 b 4.83 65 -25 57 -46 11 -0.5 5.0
TYC5974 c 4.94 64 -20 57 -41 12 0.3 6.3
FW CMa d 4.14 64 -17 57 -38 13 1.2 7.6
KQ Pup e 4.82 65 -15 60 -36 14 -0.7 6.1
α Mon 1 3.94 65 -10 61 -31 15 -0.3 7.3

At the same time of day, the five day change in azimuth is between 5° (δ Cma) and 8° (α 
Mon), while their R.A. is sensibly the same. By having five epagomenal stars instead of a 
single half-decan, the adjustment is spread over five days, which suggests daily time-
keeping was of paramount importance, but they could tolerate a daily adjustment of little 
more than 1°. Could they have tried to accomplish this by using offset meridian lines, for 
the five epagomenal stars?   The daily offset would have been successive one-fifths of the 
overall adjustment.  In practice this is not straightforward with these actual stars.

It is easy to calculate the R.A. of each of the 36 decan stars, but without being able to 
pinpoint their declinations, although –30° would be attractive.110As they were evidently 
prepared to use relatively faint stars, it is not difficult to suggest one for each of the 36 
decans. Although, even with a sizeable population to choose from there must have been 
the odd one which did not fit the scheme precisely. For example with three adjacent stars 
with 9° and 11° (R.A.) between them, the outer two could be timed on the meridian, but 
the middle one would be 1° out. To overcome this, they might well have used a pseudo–
meridian, one degree offset from the true meridian, for just that one star. Subsequently this
could have developed into a grid to cover the area around the meridian, such as can be 
seen in the Ramesside Star clock of ca. -1470.111

At first sight such observations were made by one of two observers, seated facing each 
other, with the horizontal positions of stars indicated by parts of the other observer’s body,
such as his eye, ear or shoulder. Neugebauer describes the method as ‘incredibly crude’.112

Perhaps the second observer was only to be imagined, rather as we visualise a clock when 
indicating directions by the position of an imaginary hour hand. When my oculist says 
look at my ear, he wants me to look in the direction of his ear, not study it!

From at least the Old Kingdom, Egyptian artists used square grids to set out human 
figures.113 It would not be a big step to use parts of the human body to indicate a particular 

110 Multply class K row number by 10 and subtract 305 to get R.A. in –2250. A star with a declination of 
around –30°, near the meridian, would move 10° in azimuth over 10° time. 
111 Clagett op. cit. Vol II p.406.
112 Neugebauer O., op…cit p.561.
113 Robins G, Proportion and Style in Ancient Egyptian Art, Thames & Hudson, London, 1994, p.59
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gridline with eye, ear and heart representing the three successive lines from the centre. 
What angles might have been represented? The proportional distances are in the ratio of 
about 1, 3 and 6, so if the first line was at one degree, the others would have been about 3°
and 6° from the centre.

5. Pythagorean Triangles and ratios of angles, including time, to linear units. 

In the Old Babylonian period (ca. 1800 BC), they were well versed in Pythagorean 
triangles. The Ark tablet contains a value, 14430, for the necessary rope and this can be 
expressed as 2 x 3 x 5 x 13 x 37, where the last three factors equal the hypotenuse of a 
Pythagorean triangle.114 A figure of 2405 (5 x 13 x 37) contains the hypotenuse of no less 
than 13 Pythagorean triangles – 5, 13, 37, 65(2), 185(2), 481(2) & 2405(4). A circle with 
such a radius has 108 points with integer co-ordinates, including the four cardinal points.

The more famous tablet, Plimpton 322, has 15 extant rows, each referring to a 
Pythagorean triangle, although some have argued that the scribe intended to complete a 
total of 38 rows, covering the edge and both sides of the tablet.115 There may be good 
reasons why he stopped at the 15th row.

The tablet is broken and the rows are incomplete, but it is believed they would have 
included, in two missing columns, the short side (β) and hypotenuse (δ) of a normalised 
right triangle with a long side of 1. The first extant column (δ2) is followed by expanded 
values b and d and finally the row number.

The ‘shape of the triangles varies rather regularly ….’116  This regularity can be improved 
significantly.

It is suggested that the operative part was the normalised triangle, with the expanded 
integer values only required to calibrate an instrument, consisting of an upright of length 1
and a horizontal bar of the same length. The horizontal bar could be moved length-wise, 
so that the vertical would divide it into two portions with lengths β and 1-β. There would 
then be two right-angled triangles, sharing a common long side of 1, with sides β, 1, δ, as 
defined in the tablet, and 1-β, 1, √ (2-2β+β2) or √(1-2β+δ2), in the ancillary triangle, which
could both be scaled, as required.

Scaling makes no difference to the angles in the two triangles. In the defined triangles the 
angles change by ca. 0.94° per row, but in the ancillary triangle it is about 1.5°, an 
attractive 1/60th of a quadrant.

Figures 10 and 11 plot the relationships between the angles and the short sides or the 
diagonals of the two triangles, several of which are closely linear up to about row 15. The 
ratios depend on the scaling of the triangles, which is assumed to be by a factor of 11, 
which is appropriate for the latitude of Babylon (32.5°). There the tangent of the celestial 
equator (57.5°) is 11/7. The smaller angles in the defined triangles for rows 14 and 15 are 
33.3° and 31.9°, with the latter being most appropriate for latitude 31.9°. It has been 
argued that the tablet was from Larsa on latitude 31.2°, a little south of Babylon.

The ratios of degrees per unit of length are very close to 5° for:
114 Finkel I. The Ark before Noah, Hodder & Stoughton, 2014, p 108. No units are actually mentioned.
115 Brittan J.P. et al, Plimpton 322: a review and a different perspective, Arch. Hist. Exact Sci. (2011) 65 pp 
519/566.
116 Neugebauer )., The Exact Sciences in Antiquity, Dover, New York, 1969, p.38.
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The short sides of both triangles and the smaller angles in the ancillary triangles
The diagonals and the interior angles of the defined triangles.

The diagonals of the defined triangles and the angles of the ancillary triangles have a ratio 
of about 8°

It would be simple to change the two ratios from 5° and 8° by increasing the length of the 
long side from 11 to 22 or 44 respectively to give 2.5° and 2° per unit, the two ancient 
norms. The alternative is simply to reduce the size of the unit of measurement.

If the small angle in the ancillary triangle corresponds to the zenith distance of a star that 
transits overhead, the ratio of the east/west co-ordinate of the observer’s eye is 6° (time to 
transit) per unit (see last three columns in Table 17 and figure 12). Such stars were known 
as zigpu stars at the time of mul-Apin, ca. 1000 BC.117

Plimpton 322 looks like a multipurpose tool for astronomers.

117 Hunger H. & Pingree D., MUL.APIN, An Astronomical Compendium in Cuneiform, Archiv fur 
Orientforschung, Beiheft 24, Horn, Austria, 1989 pp 141-144. Walker C. (editor), op.cit. 1996, p.48 refers to
‘A number of Late Assyrian observations and of Late Babylonian eclipse reports are timed in relation to the 
meridian passage of one of a group of stars known as zigpu stars.
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Table 17. Plimpton 322- values for rows 1 to 15, after scaling the common long side to 11 
units. 

1. Defined Triangle 2. Ancillary Triangle Stars with Declination 32.5°
On latitude 32.5°

Row β δ smaller
angle

11-β diagonal smaller
angle
zenith

distance

Time to
transit

Position
Observer’s eye

units units degrees units units degrees degrees units E/W units N/S
1 10.91 15.49 44.76 0.09 11.00 0.48 0.57 -0.09 0.00
2 10.72 15.36 44.25 0.28 11.00 1.48 1.75 -0.28 0.00
3 10.54 15.24 43.79 0.46 11.01 2.37 2.81 -0.46 -0.01
4 10.36 15.11 43.27 0.64 11.02 3.35 3.97 -0.64 -0.01
5 9.93 14.82 42.08 1.07 11.05 5.55 6.58 -1.07 -0.03
6 9.75 14.70 41.54 1.25 11.07 6.50 7.71 -1.25 -0.05
7 9.33 14.43 40.32 1.67 11.13 8.61 10.21 -1.66 -0.08
8 9.16 14.31 39.77 1.84 11.15 9.52 11.29 -1.84 -0.10
9 8.82 14.10 38.72 2.18 11.21 11.22 13.31 -2.18 -0.14
10 8.42 13.85 37.44 2.58 11.30 13.19 15.65 -2.57 -0.19
11 8.25 13.75 36.87 2.75 11.34 14.04 16.66 -2.74 -0.22
12 7.70 13.42 34.98 3.30 11.49 16.72 19.85 -3.29 -0.31
13 7.38 13.25 33.86 3.62 11.58 18.22 21.64 -3.60 -0.37
14 7.22 13.16 33.26 3.78 11.63 18.99 22.56 -3.76 -0.40
15 6.84 12.96 31.89 4.16 11.76 20.70 24.60 -4.13 -0.48

Overall
range 4.07 2.53 12.87 4.07 0.76 20.22 24.03 4.04 0.48

Ratio °/β 3.16 4.97
Ratio °/δ 5.09 26.61

Ratio
Ancillary

Angle
°/ δ

7.99 16.93

Ratio
angle
 °/row

0.92 1.48

Ratio
Altitude
Per E/W

unit
°/unit 

5.95

6. Shadow Lengths - Egypt and Mesopotamia.

Egypt

There are simple portable L-shaped sundials from Egypt dating to the middle of the 
second millennium B.C.118 They consist of a short, flat-topped, upright and a long flat 
horizontal bar to receive the shadow. The gnomon in surviving examples is very short, but
some have vertical holes indicating that the height could be raised by the addition of 
another block.  A late hieroglyph even indicates that one gnomon was like a short ladder 
with 3 different levels.119 We know that the marks on the horizontal bar are placed, in an 

118 Symons S, Ancient Egyptian Astronomy, PhD Thesis, University of Leicester, 1999, pp 127/151. On pp 
127/9 she examines one (E1) from the reign of Tuthmosis III, where the distances between adjacent 
individual hour marks are 1 – 2 – 3 – 4 – 5 with the marks 1,3,6,10, & 15 units from the gnomon.
119 Symons S., op.cit. Figure 19c.
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arithmetical sequence, at 1,3,6,10 and 15 units from the gnomon. The next two values, in 
this sequence, would 21 and 28 units, with the latter equally the number of digits in the 
Royal cubit.120

Symons has convincingly argued that those sundials, fitted with a plumb-line to ensure the
long bar was horizontal, were designed to be handheld and rotated to point towards the 
sun.121 Certainly they could be used in this way, but perhaps more for measuring altitudes 
rather than estimating time.  Comparing the distances, plus or minus 0.5 unit, in the 
arithmetical series with gnomon height, a gnomon of about 5.5 units would permit good 
altitude estimates for: 10°, 15°, 20°, 30°, 45°, 60° and 75° (Figure 13). 

To measure the same degree values, not of altitude but of time from the rising of the sun, 
we can calculate the corresponding altitude of the sun at the equinoxes as being: 9.0, 13.5, 
17.9, 26.7, 39.5, 51.1 and 60.2. A gnomon of about 5 would give reasonable estimates of 
time after rising for the first four hours or so. For the remaining hours a shorter gnomon 
would be required.

We know from the pyramid complex of Pepi II (Figure 9a) that they were particularly 
focused on the equator, or a little below it. The equinoctial shadow is aligned with the 
northern edge of the building around the open court. Its eastern edge is about 260 cubits 
from the centre of the pyramid, equating to 2.6 times the height at ground level. On the 
roof, if 13 cubits high, the ratio would be 3.0, corresponding exactly to the second mark in
the arithmetical scheme. Consequently we can think of the horizontal bar of the sundial as 
being like that roof, only relatively much longer. 122

No plumb line is shown in the Osireion drawing and it is suggested that for the estimation 
of time, throughout the year, the dial was placed due east/west with the face of the 
horizontal bar flush with the ground.123 The marks on it could then be extrapolated by eye 
to the solstice positions or the dial could be rotated about the long arm until the shadow 
fell on it (table 18).

Table 18.  Latitude 26°, Obliquity of Ecliptic 23.83°, 5  unit gnomon, no allowance for 
refraction, horizontal bar fixed due east/west and flush with the ground..

Calculated
E/W distance

Arithmetical Scheme

Hour Difference Equinoxes Summer Solstice Winter Solstice
Units Units Units Hours from

rising
Hours from

rising
Seasonal Hours from

rising
Seasonal

1 20.8 15 -5.8 1.36 1.41 1.24 1.30 1.51
2 9.6 10 +0.4 1.94 2.05 1.80 1.83 2.13
3 5.6 6 +0.4 2.86 3.08 2.71 2.63 3.05
4 3.2 3 -0.2 4.11 4.55 4.00 3.67 4.26
5 1.5 1 -0.5 5.32 6.00 5.28 4.64 5.38

The east/west components of the shadows of a 5 unit gnomon, on a latitude of 26°, would 
be within 0.5 units of four, out of the first five, positions in the arithmetical scheme at 

120 With a one digit gnomon, the altitudes of the shadows corresponding to the first seven positions in the 
series, would be 45°, 18°, 9°, 6°, 4°, 2.7° & 2.0°. The last, corresponding to one Egyptian Royal cubit of 28 
digits, matches one of the two ancient norms in Mesopotamia, with 1 cubit representing 2°. 
121 Symons S., op.cit. p. 143.
122 The pyramid at Meidum, from ca. 2600 BC has a small chapel on the east and a long causeway, running 
due east, albeit not horizontally.
123 Symons S., op.cit. Figure 17, p.131.
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hourly intervals (Table 18). The prime reason for the single discrepancy can be attributed 
to the arithmetical scheme itself, which could easily have had one more position at 21 
units from the gnomon, near the end of the bar, for the first hour. The mark at 15 units 
would indicate 1⅓ hours, not 1, from rising.

The data is broadly consistent with a gnomon of five units on a latitude close to 26° 
(Figure 13).124 The dial was evidently intended to indicate seasonal hours, but at the 
solstices for the first two hours, the times are closer in equinoctial hours. The dial would 
not show either equinoctial or seasonal hours consistently throughout the year, but was 
presumably good enough for everyday use.

Once they had recognised that the sun’s rays rotated about the top of a gnomon, they could
have studied it graphically, just as we can today, albeit with greater ease and precision 
now. This would explain why refraction seems to have played little or no role. We have 
already seen above that they were measuring time in units of either 10° or 15° in the 
pyramid era.

Mesopotamia

Much has been written about the Shadow Length Table in Mul-Apin, but there is one 
aspect which has still not been resolved.125 For the equinoxes, no shadow lengths greater 
than 3 are included, indicating there was an alternative method, other than simply the 
shadow length, to determine those positions. It was suggested above that in Egypt they 
extrapolated from the equinoctial positions to those for the solstices. In Mesopotamia they 
may well have interpolated from the solstices to the equinoxes, graphically by the 
intersections of the equinoctial shadow path with the straight lines between the points for 
the two solstices (Table 19 & Figure 15). 

Furthest from the gnomon these straight lines mark equal time from rising and lie almost 
due north/south. Nearer to the gnomon the difference in time from rising, for the two 
solstices, diverges and the lines deviate further from due north/south. For the first hour or 
so the table would give quite good estimates of the equinoctial time after rising, but less 
good thereafter.

124 The 26th parallel has interesting properties. Firstly the equinoctial shadow at an altitude of 26.7° is 60° 
from transit. Secondly, on 26.56°, the equinoctial shadow is exactly half the height of the gnomon from due 
west/east and the seked (inverse tangent) of the pole is precisely 2. Thirdly, on a latitude of 26.95° and an 
obliquity of 23.83°, the sun would rise 26.95° either side of due east at the solstices. At a radius of 10 from a
gnomon of unit height the north/south distance between the shadows at the solstices would be 17.9 units. 
With a conventional 180 days between the solstices, each unit would correspond to a decan of 10 days, on 
average. It is therefore not too surprising that several coffin lid star tables came from Asyut, on latitude 
27.2°. (see Symons S., A Star’s Year in Calendars and Years (edited by Steele J.M.), Oxbow Oxford 2007), 
p 2,Table 1.
125 Hunger H. & Pingree D., MUL.APIN, An Astronomical Compendium in Cuneiform, Berger, Horn, 
Austria, 1989, pp 153/4.
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Table 19. Mul-Apin Shadow Length Table, Latitude 32.5°, Obliquity 23.83°, 
no allowance for refraction. Indicated times (without brackets) as given in tablet.

Shadow
Length

Equinoxes Summer Solstice Winter Solstice

Shadow
length

Time 
Ind.

Time
Calc.

Diff Time
Ind.

Time
Calc.

Diff. Time
Ind.

Time
Calc.

Diff.

cubits cubits degrees degrees degrees degrees degrees degrees degrees degrees degrees
10 (8.8) (7.5) 7.7 (-0.2) 6.0 7.6 -1.6 9.0 7.9 +1.1
9 (7.9) (9.5) 8.6 (+0.7) 6.7 8.4 -1.7 10.0 8.8 +1.2
8 (7.0) (10.7) 9.7 (+1.0) 7.5 9.4 -1.9 11.2 9.9 +1.3

7126 (6.1) (12.3) 11.0 (+1.3) 8.6 10.7 -2.1 12.9 11.3 +1.6
6 (5.2) (14.4) 12.9 (+1.5) 10.0 12.4 -2.4 15.0 13.3 +1.7
5 (4.3) (17.4 15.4 (+2.0) 12.0 14.8 -2.8 18.0 16.0 +2.0
4 (3.5) (21.4) 19.0 (+2.4) 15.0 18.2 -3.2 22.5 19.8 +2.7
3 3 25.0 22.0 +3.0 20.0 23.7 -3.7 30.0 27.4 +2.6
2 2 37.5 32.0 +5.5 30.0 33.7 -3.7 45.0 43.1 +1.9
1 1 75 57.0 +18.0 60 55.8 +4.2 90 73.7 +16.3

There is no doubt that the mul-Apin table referred to equinoctial time after sunrise, but 
there remains the problem with the one cubit length for the winter solstice. For the 
summer solstice and the equinoxes the length of shadow, when respectively 60° and 75° 
from rising, would be 0.9 and 0.7 cubits, both close enough to be rounded to 1 cubit. At 
the winter solstice the shortest shadow is 1.57 cubits, on the meridian, but it is only 74° 
from rising and therefore far from the 90° of the constant. It is reasonable to consider that 
it ‘was presumably added for reasons of symmetry and to show the value of the constant 
for that solstice’ or the measurements were a little further south.127

Hunger and Pingree claimed that ‘we must regard the table as based on mathematical 
manipulation rather than on observation’.128 Clearly the table incorporates reciprocal 
relationships, but they must also have had a deep practical understanding of the underlying
phenomena (Table 19). The values in the table are after they were forced into the straight 
jacket of the formulae and so it is likely their underlying data was much more precise. For 
the equinoxes the fit is not close, presumably because of the ‘desire to fix the constant (75)
midway between those for the solstices (60 and 90)’.129

From Table 19, for a shadow length of 2 cubits at the solstices, the product of the shadow 
length and the calculated time after sunrise is 67 and 86, compared with the scheme 
constants of 60 (summer solstice) and 90 (winter solstice).. Figure 16 shows the linear 
relationship between time and the inverse shadow length and the solstices and equinoxes. 
For the solstices the linear trendlines indicate ratios of 96 and 56 and also rising H.A. of 
256° and 286°, which correspond to declinations of 20.8° and -23.4° and rising azimuths 
of 65° and 118°. The good fit of the latter, ignoring the 1 cubit value, suggests that the 
scheme was based primarily on the winter solstice with a constant of 90 and that the 60 
and 75 for the summer solstice and equinoxes were derived therefrom.

126 The table shows no values for this shadow length, because of the difficulty of dividing by 7 in the 
sexagesimal system, but it is included here for completeness.
127 Bremner, R.W., The Shadow Length Table in Mul.Apin, in Die Rolle der Astronomie, Graz, 1993, p.370. 
See also Steele J., Shadow-Length Schemes in Babylonian Astronomy, Academia, 2012?, p.11: ‘This entry 
in the scheme is therefore an artefact of the underlying mathematical rule and is, presumably, included in the
text either simply for the sake of completeness or perhaps because it is the value of the constant c for that 
month and so is useful in calculation.’  A little south of Babylon the shadow would be under 1.5 cubits, 
which could be rounded to 1.
128 Hunger H &  Pingree D, Astral Sciences in Mesopotamia, Brill, 1999 p.80.
129 Bremner R.W., op.cit. p.369.
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7. The 2:1 and 3:2 ratios for longest to shortest day and the Path of Anu.

People all over the world have used the rising and setting of the sun as markers for annual 
events such as the standstill positions at the solstices.130 Those living in what is now 
northern Iraq were surely no different and would have noted the extreme positions of the 
sun at the horizon. They would soon have realised that these four points, plus the 
meridian, divided a circle into six equal segments. Adding in the east/west line of the 
equinoxes gives segments of 30° and we have noted such bearings at Eridu (Latitude 
30.5°) around -5000 (Page 12 above).  By c.-3100 they were using a star pictogram with 8 
points, so by then they were thinking in segments of 15°.

Figure 17 shows graphically the 2:1 and 3:2 ratios for the longest to shortest days, based 
respectively on azimuth and equinoctial time, at the horizon. The outer time polygon has 
sides of 24 cubits for 36° time. Interestingly the angle, between the solstices and the 
equinox, is 18°, similar to that of the oblique palace wall (17°) and to the divisions 
between the paths of Anu, Enlil and Ea (see footnote 15 above).

Both estimates (15° declination and 17° from due east) for the boundary of Anu stars 
would be correct on a latitude of 28°, which suggests that the width of the Anu band was 
more likely to have been determined in the southern, rather than the northern, part of 
Mesopotamia. Table 20 shows the situation on a latitude of 30° and demonstrates that 
Anu’s limits were probably based on equinoctial times above the horizon with the width 
being 36° or one tenth of a day.131  Figure 17 shows the limits of 7 units from the east/west
line for the Anu band on a latitude of 35° 

Table 20. Latitude 30°. Obliquity of the Ecliptic 23.9°. No allowance for refraction.

Declination Rising  HA Time above
horizon

Rising Az Azimuth swept

degrees degrees degrees degrees degrees

23.9 255 210 62 236

Anu 15 261 198 73 214

0 270 180 90 180

Anu -15 279 162 107 146

-23.9 285 150 118 124

Anu range 18 36 34 68

Solstice range 30 60 56 112

Solstice ratio132 1.4 1.9

Each 24 cubit side corresponds to 36°(time), giving a ratio of 1.5° per cubit, which with a 
double cubit would increase to 3.0°. Such a unit would approximate to the ratios implicit 

130Thurston H., Early Astronomy, Springer-Verlag, New York, 1994, pp 10/11.
131On a latitude of 35°, lines of stars with declinations of  ± 15° would rise 18° from due east and their time 
above the horizon would be 202° and 158°. The tangent of 18° is 1/3, which would have been an attraction.
132The ratios of 3:2 and 2:1 on latitude 35° were 2.8:2 and 1.9:1 on latitude 30°.
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in HS345, summarised as 51 units from the ‘Stars’ to Bootes and a further 7 units to 
Scorpio.133 This is particularly true if the ‘Stars’, in this instance, should be identified not 
as the Pleiades but as the Hyades, at least for the overall distances to SUPA and the 
Scorpion.

Table 21. Summary of tablet HS245, the Hilprecht Text (R.A. for -1600)

Exemplary Star R.A. Degrees
from Hyades

Distance Ratio

degrees degrees units degrees/unit

Stars η Taurus (Pleiades) 8 -11

θ Taurus (Hyades) 19 0

SUPA α Bootes 172 153 51 3.0

Scorpion α Scorpio 197 178 58 3.1

Table 22 summarises the evolution of ideas about the ratio of the longest/shortest day. It 
does not include HS245, which pushes the 3:2 ratio back to the Old Babylonian period..

Table 22, Horizon measurements on Latitude 35°, Obliquity 23.9°, no allowance for 
refraction

Azimuth
swept

Cubits
swept

hexagon

Cubits
swept

Stepped
curve

Hourline
s 

Hor.
Dial

Text
BM1717

5 +
17284134

Text
mul.Api

n

Text
mul.Api

n

Text
Ivory
Prism

Length of
Daylight

Degrees
azimuth

Cubits
along
sides

N/S
cubits

Degrees
from

meridian

none minas beru beru Degrees
time

Approx.
date

-5000? ? <-700 -1800 -1000 -1000 <-610

S.
Solstice

240 96 96 120.7 4 4 3.6 8 216

Equinox 180 72 72 90 3 3 3 6 180

W.
Solstice

120 48 48 60.4 2 2 2.4 4 144

Ratio 2:1 2:1 2:1 2:1 2:1 2:1 3:2 2:1 3:2

Ratio
degrees
per unit

1 2.5 2.5 1 60 60 30 30 36

In 1947 Neugebauer was clearly taken with the idea of the 2:1 ratio for the longest and 
shortest days being based on the use of a water clock, but by 1975 he was rather more 
cautious.135 He refers to ‘the assumption that the given weights represent the outflow of 
water from the bottom of a cylindrical container...’. It was only an assumption and in 1996

133Hunger H. & Pingree D., Astral Sciences in Mesopotamia,  Brill, Leiden, 1999, p.54
134Hunger H. & Pingree D. Mul.A[pin, AfO, Horn, Austria, 1989, p 163.
135Neugebauer O., The Water Clock in Babylonian Astronomy,  1947, ISIS 37, pp37/43 and HAMA, 1975, p
708.
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Hoyrup drew attention to the problems with the water clock model.136In 2000 Michel-
Nozieres concluded that ‘the water weight data … cannot be taken literally’.137  In spite of 
Hoyrup’s work, Hunger and Pingree in 1999 stated that ‘1 mina of water in a water-clock 
measured a third of an equinoctial night’, with no caveats.138

In mul-Apin the ratio is associated with minas, normally a measure of weight, equivalent 
to about 500 gms.139 From school problems from about -1800 we learn of water flowing 
from a water-clock. However the existence of water-clocks does not mean that a ratio 
established over millennia, was immediately discarded.

The study by Michel-Nozieres of the problems inherent in outflow clocks found that under
the best conditions, the ratio would approximate to√2 :1, which is far from 2:1. In fact , 
expressed as 2.8:2, it is obviously much closer to the 3:2 ratio in time.

The 2:1 ratio appears later (pre -611) on an ivory prism as a ratio of angles, expressed in 
beru (30°) and us (1°), so this same ratio was, in different texts over more than a 
millennium, based on unstated units, units of weight and units of angle or time.  We also 
have to bear in mind the use of ninda, normally a unit of length, in mul.Apin. After the 
summer solstice (II I 11/12) ‘the sun … turns and keeps moving towards the  South at a 
rate of 40 NINDA per day’ and after the winter solstice (II I 17/18) ‘the sun … turns and 
keeps coming up towards the North at a rate of 40 NINDA per day’.140 In the same section 
there is reference to the length of the watch in terms of minas, so we appear to have a 
mixture of units of weight and length.

If, at the time of mul=Apin and before, they could measure time accurately enough in 
equinoctial units to confirm the 3:2 ratio, it seems somewhat perverse to use 
simultaneously a 2:1 ratio of weights, unless the two ratios were never intended to refer to 
the same phenomenon or were not established at the same latitude. 

To resolve this issue perhaps we need to take a different approach. When experimenting 
with water clocks they might have tried weighing the water dripping into a bowl until the 
scales tipped.141 This would justify measuring the quantity of water by weight rather than 
volume. If they were measuring the time for the sun to traverse a large segment of the 
horizon they might have noticed that it was like the bow wave of a swimming duck. This 
would justify the association of weight and ducks, with many standard weights being in 
the form of a duck.142 However it would imply that ‘mina’ in addition to its usual meaning 
of weight was also a segment of a circle. With 6 minas in a full day, each would 
correspond to 60°.

136Hoyrup J., A note on water-clocks and on the authority of texts (pre-print 1996), AfO, 44-45, 
137Michel-Nozieres C., Second Millennium Babylonian Water Clocks: a Physical study, Centaurus 2000, 
Vol.42 pp 180/200.
138Hunger H. & Pingree D., Astral Sciences in Mesopotamia,  Brill, Leiden, 1999, p.46
139Hunger H. & Pingree D, Mul.Apin, An Astronomical Compendium in Cuneiform, AfO, Horn, Austria 
1989, pp 163/4 (Appendix). The tablets are dated to the old Babylonian period c.-1800.
140Hunger H. & Pingree D., Mul.Apin op.cit pp 72/75.
141In Portugal many years ago I saw an old domestic water meter which used such a system. When one bowl 
filled the flow was diverted to fill the other. Each switch being counted to determine the volume.
142A water clock with sinking bowls would also remind them of ducks, with both likely to dive suddenly.
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8. Djed Pillar and Time Measurement.

The vertical Djed pillar in Figure 14 vaguely hints that it might be related to the 
measurement of time using a horizontal sundial. On the other hand Figure 18 shows a 
modern drawing of the hour-lines for an east-facing vertical sundial with a style aligned to
the pole and also a Djed pillar at Abydos (latitude c. 26°) inclined at c. 25°  from the 
vertical and surmounted by twin plumes.143  The two are remarkably similar. The width of 
the ‘pillar’ corresponds to the length of the style and the hour-line positions depend on the 
height of the style away from the meridian plane. In this type of vertical dial the longest 
shadows are at mid-day and the shortest at the horizon. The ’pillar’, on which the shadows
fall, is inclined from vertical at an angle corresponding to the latitude of the site.

The Djed pillar symbol itself dates back to pre-historic times, but this does not imply that 
it was always associated with the measurement of time.144 It could be that when this type 
of sundial was developed, someone noticed that the shadow lines looked like a leaning 
Djed pillar, whatever that might have been. The ritual of ‘raising the djed pillar’, is known
from the Old Kingdom at Memphis, which suggests the possibility that the association 
with time was established by say 2500 BC.145 This date coincides with the growing 
importance of the east/west line (cf Menkaure’s pyramid causeway) and the size of the 
mortuary chapels and other buildings immediately east of pyramids.

The Djed pillar symbol, and presumably its dialling properties, reached Mesopotamia 
from Egypt around -1800146. From about -500  there is a shadow table (BM29371) with 
intervals of 5 days, against each of which is written ‘One cubit shadow, 1 2/3 double-hours 
day’.147 This has been interpreted as meaning ‘after 1 2/3 double-hours of day the shadow 
of the gnomon has a length of 1 cubit’, throughout the year. If 1 2/3 double hours equates to
50° (time), then an east-facing vertical gnomon with a style of 5/6 cubit, would have a 
shadow of 1 cubit.148

143Cousins F.W., Sundials, Redwood Press, Trowbridge, 1972, p.132 and Lurker M., The Gods and Symbols 
of Ancient Egypt, Thames and Hudson, London 1982, p.47. There is a large ancient Greek sundial with 
similar curves at the British Museum (ref:1816,0610.186). It is inscribed ‘Phaidros, son of Zoilos’.
144Shaw I. and Nicholson P., British Museum Dictionary of Ancient Egypt, London, 1997, p.86. On page 
304, they mention the possibility that the was sceptre was used as a gnomon and it might be seen as stripped 
down version of a vertical dial, facing east or west, with the angled head pointing to the pole.
145Lurker M., op.cit, p 47.
146Black J. & Green A., Gods, Demons and Symbols of Ancient Mesopotamia, British Museum, 1992, p.74.
147Britton J. & Walker C., Astronomy and Astrology in Mesopotamia (in Astronomy before the Telescope), 
British Museum, 1996, p.47.  More recently in Steele, J. Shadow-Length Schemes in Babylonian 
Astronomy, Academia, 2012? pp 30ff there is a different interpretation of the text.
148The calculation is Tan 50 x 5/6.
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9. Ready Reckoner for converting rising azimuth to rising time.

There is an alternative to the concentric polygons in Figure 17. We have already noted the 
stepped curve for the linear measurement of azimuth, so it is likely they would have 
sought a similar curve for the measurement of time. On a latitude of 35° the rising sun at 
the solstices would be 36° (time) apart and approximately +/- 30° from due east149. On the 
stepped curve for azimuth, the sun would be 12 (30/2.5) cubits north or south of due east 
and for that same N/S distance to suspend 18° (time), the distance along the east/west line 
would be 36.9 cubits.150 Rounding down to 36 cubits and, assuming 2° per cubit, would 
indicate a time difference of 18° between an equinox and a solstice. It would be a simple 
matter to increase the dimensions of the stepped curve by 25% and rotate it so that the 
long axis lay due east/west. With each east/west cubit equalling 2° time, the furthest point 
would be 45 cubits from the centre, corresponding to 90° of time to the meridian at the 
equinoxes (Figure 19).  The section of the time curve between solstice and equinox is 
sensibly linear, lying between +/-12, 36 and 0,45 and resembles the hypotenuse of a 3,4,5 
triangle, scaled up by a factor of 3.

There would be near linear relationships between declination, rising time and rising 
azimuth and also the cubit measures of rising time (at 2.0°) and rising azimuth (at 2.5°) It 
would exploit the linear relationship between rising azimuth and time to the meridian by 
using both of the two ancient norms for the ratio of degrees per cubit.151 Table 22 
demonstrates how closely the results of such a ‘ready reckoner’ would match modern 
calculations. 

The proposed time curve does not allow measurements across the east/west line. For any 
body with positive declination and rising north of that line, it is necessary to add 45 cubits 
to the equatorial distance. For the summer solstice this means adding 45 and 9 to give 54 
cubits. Graphically this is like measuring to a mirror image, shown dashed in Figure 19. 
At the winter solstice the distance is 36 cubits, a difference of 18 cubits or 36° (time).

If correct, the ready-reckoner must surely represent a high point in the use of linear cubits 
to represent angles. However it does have a disadvantage: The three months between 
solstice and equinox are not distributed evenly along the 15 cubit hypotenuse with the 
divisions between them being at 7.1 and 12.6 cubits from a solstice. This can be remedied 
by changing the X-axis from cubits to days.

In a schematic year of 360 days, there are 180 days or 180° longitude, between solstices, 
so the average daily change in time, would be 18/180 cubits equivalent to 0.2 cubits or 12 
minutes. Each east/west cubit would equal about 10° longitude.  However using longitude 
(or days), as shown in red in Figure 19, means the loss of the near linear relationship 
between rising azimuth and rising time, when working solely in cubits.

149On a latitude of 35° and an obliquity of 23.8°, the sun at the solstices would rise 29.5° north or south of 
the east/west line and would take 90 +/-18° (time) to reach the meridian. The ratio of the longest to the 
shortest day would 108/72 or 3/2, an ancient Babylonian norm.
15012/Tan (18) equals 36.93 cubits.
151The ratio between time and azimuth is about 0.6 for latitudes 32.5/38° and 0.5 for 25/30°. The latter would
require a pair of stepped curves with ratios of 2° (time) and 3°(azimuth), instead of 2.5°. The assumed 
solstice positions being 27° from due east and 13.5° (time) from an equinox, both correct about 27.5° 
(latitude).



Table 23. Columns 1/5 are modern calculations for 35° latitude, 23.8° Obliquity, with no 
allowance for refraction. Column 6 is azimuth from winter solstice (assumed to be at 60° 
from the meridian) divided by 2.5. Column 7 is column 6 times 1.5 (0.75 x 2), Column 8 
is the difference between modern calculations and the ‘ready reckoner’. Column 9 is the 
daily change and Column 10 is the similar modern calculation.

Long RA Decl. Time
from

solstice

Rising
Azimuth

Rising
Azimuth

from
W.S.

Time
from

winter
solstice

Differen
ce

Daily
Change

Daily
modern

calculation

1 2 3 4 5 6 7 8 9 10

degrees degrees degrees degrees degrees cubits degrees minutes minutes minutes

0 0 0 18 90 12 18 0

1 0.9 .4 17.7 89.5 11.8 17.7 -.1 17.7 16.9

15 13.8 6.0 13.8 82.7 9.1 13.6 -0.7

16 14.7 6.4 13.5 82.2 8.9 13.3 -0.7 17.0 16.5

30 27.8 11.6 9.7 75.7 6.3 9.4 -1.0

31 28.8 12.0 9.4 75.3 6.1 9.2 -1.1 15.8 15.7

45 42.5 16.6 6.0 69.6 3.8 5.8 -0.8

46 43.5 16.9 5.7 69.2 3.7 5.5 -0.8 13.2 13.7

60 57.8 20.5 2.9 64.7 1.9 2.8 -0.1

61 58.8 20.7 2.7 64.5 1.8 2.7 0 9.6 10.4

75 73.7 22.9 0.8 61.6 0.6 1.0 0.8

76 74.8 23.1 0.7 61.4 0.6 0.9 0.8 5.1 5.7

85 83.5 23.7 0.1 60.7 0.3 0.4 1.1

86 84.5 23.7 0.1 60.6 0.2 0.4 1.1 1.8 2.0

90 90.0 23.8 0 60.5 0.2 0.3 1.1

91 91.1 23.8 0 60.5 0.2 0.3 1.1 -0.2 -0.2

The x-axis covers 90° longitude (or days) and the y axis the rising azimuth in cubits, 
equalling 2.5°. At 30 day intervals the y axis values (Table 23, col.6) are 12, 6.3, 1.9, 0.2 
cubits, implying respectively 0.19, 0.15 and 0.57 cubits/day on average. The three initial 
values in the Jupiter tablets are 12, 9.5 and 1.5 minutes or 0.2, 0.16 and 0.25 degrees.152 
The match is least satisfactory around 20° before a solstice. 

At first sight, the Jupiter values closely match those for the sun in Table 23, particularly if 
the latter represent 30 day averages, and provide support for the ‘ready-reckoner’ 
hypothesis. The overall slope of the curve is dictated by the relative size of the two 
stepped curves and the closeness to the Jupiter values suggests that they were indeed using

152Ossendrijver. M, Ancient Babylonian astronomers calculated Jupiter’s position from the area under a 
time-velocity graph, Science Vol. 351, Issue 6272 pp 482/4, Jan 2016. His figure 2 shows three values 
beginning at 12 minutes per day, with 9.5 and 1.5 minutes per day 60 and 120 days later. The first equals the
average rate of change, between solstices, of 36° in 180 days, mentioned earlier.
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2.5° and 2° per cubit for the sun. However closer inspection shows that firstly, as already 
noted, one refers to time and the other to linear cubits and secondly the number of days 
between the extreme values are 120 and 90. Ossendrijver has demonstrated that they were 
measuring time rather than rising azimuth and we must therefore consider the possibility 
that they were measuring both and the Jupiter data was of particular interest, at the time, 
precisely because the numerical values were similar to those of the sun, albeit using 
different units, over different time spans. Table 24 summarises the data.

Table 24. Jupiter’s path for the 120 days before a specific first standstill position, when 
Jupiter is close to the sun in mid-winter. The basic data is for 12/12/2018 to 11/4/2019, but
applied to a latitude of 35°, with 23.8° for the obliquity of the ecliptic. The data for the sun
is from Table 23 (col.6).

Jupiter (R.A.) Sun (rising time)

Days before
standstill

R.A. Change R.A.
to next day

Jupiter tablet
values

Days before
Winter
Solstice

Av. Change
over 30 days,
in N/S cubits 

degrees minutes ? days 1/60th cubit

120 245.9 13.8 12.0 90/60 11.4

90 252.6 12.6

60 258.4 10.2 9.5 60/30 8.8

30 262.4 5.4

0 263.9 0 1.5 30/0 3.4

Furthermore on this small part of its orbit Jupiter moves 18° R.A. in 120 days while the 
sun’s rising time changes 18° in 90 days.
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Summary Timeline

Egypt in red

Year Location Pythagorean
Triangles

Subdivisions
of circle

Time

-5500 Tell es-Sawwan 45°
-5100 Eridu 30°
-4700 Nabta Playa 3,4,5
-4500 Egypt Year 360 +5 days
-4450 Nabta Playa 26.56°
-4250 Eridu 3,4,5
-3900 Abydos 5 pointed star 72° divisions
-3400 Hierakonpolis Discovery of 'Pole' on

ground
-3100 Mesopotamia 8 pointed star
-3000 Egypt spirals
-2600 Saqqara 4 later 6 different Horizontal Dials
-2556 Khafre’s pyramid Giza Built-in hours 60 minutes
-2500 Menkaure’s Causeway? Three season year
-2500 Standard Pyramids 3,4,5 Standard hour 60 minutes

& short hour 40 minutes
-2300 Coffin Lids 

Many ex Asyut
Short hour 40 minute s

-1900 Mesopotamia
Old Babylonian Period

26 different - Ark &
Plimpton tablets

daylight 2:1 & 3:2 ratios 

-1800 Thebes Horus Eye
fractions

-1500 Egypt L-shaped sundials
-1300 Abydos Djed Pillar E/W Sundial
-1000 Mesopotamia Mul-Apin Shadow length table
-700 Babylon azimuth in

2.5° steps
Longitude near horizon

-400? Babylon Ready Reckoner for
converting rising azimuth

to rising time
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