A Minimal Pulsar1 Detection System

PW East

1. Introduction

In a previous paper2 it was concluded that at least a 3m dish was required for detecting the strongest pulsars in both the North and South Hemispheres using the RTL2832U DTV dongle. Several amateurs have achieved this aim with 3m and larger parabolic dish antennas and efforts have been made to construct antennas more suitable for a small garden. A. Dell’Immagine3 has been successful at 422 MHz using a 3D corner reflector antenna with an aperture of 2 m by 2 m to intercept B0329+54. Amateur detection of pulsars is not easy, the difficulties in this quest are well-documented. With large aperture antennas, identifying pulsar signals can be achieved with some confidence but the challenge in this project4 is to positively detect a pulsar with a small back-garden antenna when the integrated pulsar signal still competes with natural noise peaks.

In this note a pair of 2.5 m long, 17-element Yagi antennas (approximately 1.5 m2 aperture) feeding three parallel RTL SDRs to cover the 608-611 MHz radio astronomy band is described, together with methods to identify and detect the B0329+54 pulsar at relatively low signal-to-noise ratios.

2. System Description

The radio astronomy frequency band 608-611 MHz was chosen for reasons of modest antenna size and having a wide beamwidth for long drift-scan acquisition times. In addition to being in a region of increased pulsar signal levels, RF de-dispersion is not necessary in the chosen 2.4 MHz RTL SDR sub-bands. The system hardware largely follows the Quad RTL SDR Receiver outline suggested in Reference 8, except for the simplification of the noise modulation switch. A noise source is no longer required (see Figure 1) as the synchronizing function has been shown to be effective by modulating the receiver system noise.

The antenna developed for pulsar detection in the 611 MHz radio astronomy band is a twin 2.5 m long, 17-element Yagi. The design (Appendix A4) used the Paul McMahon YagiCAD6 design tool. The resulting structure using 1” aluminium box section boom and 6mm aluminium rod for the elements and fixed with self-tapping screws is light and portable and easy to construct.

The twin-Yagi elevation and azimuth beamwidth is approximately 14° x 28° and oriented in drift-scan mode allowing for B0329 visibility between 3dB points of up to 3 hours. Yagis do suffer from high back and sidelobes and for this reason, at this frequency, a 1.4 m 3D corner reflector antenna with similar collecting area might be preferred.

The essential band-pass interdigital filter was designed using the online tool7 by Ajarn Changpuak. This calculator is particularly useful as it allows choices of box sizes, for instance the sides in this design (Appendix A5) were chosen as 25 mm by 6 mm for convenience of material purchase and ease of manufacture; the box and 6 mm copper rods are assembled simply using self-tapping screws (see Figure 2). M6 bolts are used for the tuning screws. The result is a band-defining filter with very sharp band edge cut-off and high out-of band Digital TV rejection. Cost of the aluminium metal for the construction of the antenna and filter was under $75 and construction time about a day each.

Antenna: Two 17-element Yagi antennas with a theoretical combined gain of 19.3 dB and electrical cross-section of 1.6 m2, mounted on a 1 m aluminium frame with a combined design

![Figure 1. Pulsar Radio Telescope Schematic](image-url)
beamwidth of $28^\circ \times 14^\circ$. The individual antennas can be oriented for vertical or horizontal polarization. For portability and convenience, they can be mounted and supported on a modified builders workbench. The RF 2-way reactive power combiner loss is less than 0.5 dB (Mini-Circuits ZAPD-21-S+).

RF Chain: One Mini-Circuits ZX60-P33ULN LNA (0.4 dB NF, 28°) + 5-element interdigital filter + 2x Mini-Circuits ZX60 P162LN LNAs (0.6 dB NF) + PIN diode RF switch (Mini-Circuits ZMSW-1211) + 4-way power divider.

![Figure 2 Antenna and Interdigital Filter Detail](image)

Receiver: Quad RTL\(^5\) assembly driven by a single 1 ppm TCXO and cooled with 4 fans. For the present tests, only 3x RTL SDR's are used at centre frequencies 609, 611 and 613 MHz and each run with a 2.4 MHz clock. Gain setting is 33.6 dB. For better clock stability the SDR-Kits GPSDO can be set at 28.8 MHz allowing easier identification and match of pulsar topocentric\(^{11}\) rotation frequency/period (the topocentric period of a pulsar is the observed rotation period as modified by the Doppler shift due to the Earth-pulsar relative motion).

PC: Dell Latitude D630 laptop with 4x USB ports running Linux.
Three USB ports link the 3 RTL units and the fourth port drives an Arduino USB GPIO card, which is used for controlling the PIN modulating switch.

Figures 2 and 3 show the receiver hardware and layout. The construction is relatively simple and requires no special tools apart from a vertical drill and a vice. The band-pass filter and antennas can be set up using the 'USB 138M-4.4G Signal Source Signal Generator Simple Spectrum Analyser'. Another useful RF tool is the modestly priced 'N1201SA UV RF Vector Impedance ANT SWR Antenna Analyser'. Both are cheaply available on ebay.

![Figure 3 Receiving System Hardware](image)

3. Radiometer Equation and Sensitivity
To check that design has sufficient sensitivity, the well-known radiometer equation is applied. It is easily modified for the digital receiver case where data is ascribed to a fixed number of bins N and becomes,
where, \(T_{\text{sys}} = T_{\text{receiver}} + T_{\text{sky}} + T_{\text{antenna}} \)

and, \(B \) is the RF Bandwidth, and \(t \), the observation time.

In the present case, \(B = 6\,\text{MHz} \), \(t = 7500\,\text{s} \) and \(N = 109 \) (optimum figure for pulsar B0329), so that \(\sqrt{Bt/N} = 20.318 \).

Using a practical result, after folding, the mean DC level of the folded plot is equivalent to \(T_{\text{sys}} \) and the rms noise level equivalent to \(\Delta T \). The measured ratio for a typical trial test was 22000.

This close agreement shows how effective the folding algorithm is in removing the effect of RF, video and spike interference. Although the observed interference level was low, some interference was clearly evident in the data.

In early tests, software designed to remove interference prior to folding showed very little overall signal-to-noise ratio (SNR) improvement.

The folding algorithm, especially applied to very long records, becomes very finely tuned to the wanted period and will find strong peaks in random noise so that the pulsar validation routine must be very precise, especially when recovering low SNR pulsar signals; this is the major problem for small systems.

4. System Setup and Checking

The software package 'Radio-Eyes' http://www.radiosky.com/ can be used to provide ephemeris data to correctly set the antenna pointing direction and data acquisition times to collect data from the pulsar under investigation. In this instance the subject is pulsar B0329+54. At the author’s location the pulsar peaks at due North at an elevation of 87.3°. Using Radio-Eyes to input the antenna beam pattern and pointing direction shows that the pulsar enters and leaves the antenna 3dB beam at an elevation of 76° and the optimum pointing elevation to maximize time in beam is 85.5°. An ex-military hand compass is used to set the north-pointing antenna direction.

To check the receiver system, the software, SDR# + Zadig driver from http://www.sdrsharp.com/ can be used. The first check is to monitor all three RTL SDR’s in turn to check for similar power levels. Receiver noise temperature can be estimated by comparing the receiver output noise level with the LNA input open-circuited and loaded by a matched load since the expected noise power ratio is, \(T_{\text{receiver}}/(T_{\text{receiver}} + 290) \).

Given \(T_{\text{receiver}} \), then \(T_{\text{sys}} \) can be estimated from the power received when the antenna is coupled and correctly directed.

Measurements using SDR# for the present receiver are;

- LNA input open-circuit, \(p_{\text{oc}} = -23.2 \,\text{dB} \);
- LNA input connected to matched load, \(p_{\text{ml}} = -16.0 \,\text{dB} \);
- LNA input connected to match loaded power splitter, \(p_{\text{mls}} = -16.6 \,\text{dB} \);
- Antennas connected via splitter, \(p_{\text{rx}} = -18.7 \,\text{dB} \).

The SDR# software calibration is unknown, so these figures and those derived should only be taken as a rough indication, but it does allow a useful estimate of the system sensitivity.

From these figures, we can calculate:

\[
T_{\text{receiver}}/(T_{\text{receiver}} + 290) = p_{\text{oc}} - p_{\text{ml}} = -7.2 \,\text{dB} = 0.190 \quad \text{and} \quad T_{\text{receiver}} = 68 \,\text{°K}
\]

Including the power splitter, \(T_{\text{receiver}}/(T_{\text{receiver}} + 290) \rightarrow p_{\text{oc}} - p_{\text{mls}} = -6.6\,\text{dB} = 0.219 \), so, \(T_{\text{receiver}} \rightarrow 81 \,\text{°K} \), showing a power splitter combining loss of just 15 °K or 0.2 dB.

Finally, the overall system noise temperature connected to the antennas pointed to the target direction is, \(T_{\text{sys}} = T_{\text{receiver}} + T_{\text{sky}} + T_{\text{antenna}} \) and is calculated from,

\[
T_{\text{sys}}/(T_{\text{receiver}} + 290) = p_{\text{oc}} - p_{\text{mls}} = -2.1 \,\text{dB} = 0.617 \quad \text{so}, \quad T_{\text{sys}} = 229 \,\text{°K},
\]

or \(T_{\text{sky}} + T_{\text{antenna}} = 148 \,\text{°K} \).

These figures include cable loss between the antennas and combiner (say ~15 °K), but allowing 20 °K for the sky, still imply a strong contribution of antenna side and backlobes.

Applying the data presented in the radiometer section above, we can conclude that the system sensitivity, \(T_{\text{sys}}/\sqrt{Bt/N} \), is approximately 0.01 °K. Assuming the antenna collecting area is around 1.5m², this sensitivity is equivalent to 9 Jansky peak pulsar power, which is predicted to be sufficient to detect pulsar B0329+54 in a 6 MHz RF bandwidth at 611 MHz.

As a backup check the figures for the design were input to the online radiometer calculator at:-
5. Data Collection

Several compiled C-programs have been written to facilitate data collection and processing: these are available from the link:

www.y1pwe.co.uk/RAProgs/pulsars.html.

The three RTL SDR channels should ideally be switched on together to synchronize the recorded data. Unfortunately, although the three devices are controlled by a single batch file, software and PC hardware delays mean there may be a few milliseconds difference in their switch-on times. Data synchronizing is therefore the first task of data processing. Synchronism is facilitated by operating the RF input switch with a random code to modulate the front-end noise simultaneously for all three RTLs for about 10 seconds. A separate Windows terminal triggers the modulation software simultaneously with the data acquisition software.

Acquisition Software (Appendix A1):

The Arduino GPIO card is controlled by a Python program to randomly modulate the receiver noise at the start of the RTL SDR data recording.

rtl_sdr22r is a modified Osmocom https://osmocom.org/projects/sdr/wiki/rtl-sdr data collection software version of *rtl_sdr.exe* to cope with producing large files and switching off the inbuilt dithering.

The command format is :

```
run_prg_at <"Runfile + command line"> <hr> <min> <sec>
```

Typical commands are:

- **Terminal 1:**

  ```
  run_prg_at "rtlsdr.bat" 20 30 00
  ```

- **Terminal 2:**

  ```
  run_prg_at "python SwitchMod.py" 20 30 00
  ```

Code detail is given in Appendix A1. To run the switch modulation program, Python 2.7 needs to be installed. The run time, <hr> <min> <sec> is user-chosen to encompass the time that the target pulsar is within the receiving antenna beam. Radio-Eyes software can provide the expected time at beam centre for these calculations.

6. Data Processing

6.1 Folding Algorithm Properties

The primary function of the folding algorithm is to cut the data up into sections equal in time to the expected pulsar period and add these together. In this way, the detected pulsar pulse aligns in position to add coherently and the base noise and interference power adds incoherently as the square root of the number of sections summed. Consequently, the pulsar amplitudes integrate and the pulse signal-to-noise ratio increases sufficiently to make the pulsar pulse visible.

Figure 4. Folding Algorithm Summary

<table>
<thead>
<tr>
<th>Number of folds M</th>
<th>Integrated pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pulse adds linearly</td>
<td></td>
</tr>
<tr>
<td>* Noise adds as square root</td>
<td></td>
</tr>
<tr>
<td>* SNR improves as sqrt(No. Folds)</td>
<td></td>
</tr>
<tr>
<td>SNR = sqrt(Br/N) x Tp/Tsys</td>
<td></td>
</tr>
<tr>
<td>= sqrt(BMp/N) x Tp/Tsys</td>
<td></td>
</tr>
<tr>
<td>* Optimum No. bins N = Period/Pwidth</td>
<td></td>
</tr>
<tr>
<td>* Highly tuned period filter</td>
<td></td>
</tr>
</tbody>
</table>

\[T_p = \text{equivalent pulsar temperature} \]
\[T_{sys} = \text{System temperature} \]
\[p = \text{Pulsar period} \]
\[t = \text{observation time} \]
In frequency terms the operation can be thought of as applying narrow band filters about the harmonics of the pulsar fundamental frequency (= 1/period). This fine filtering property can and will find spikes and patterns in the residual noise or possibly RF interference of the right frequency that persist to generate ambiguous responses at random phases that compete with wanted low-level pulsar signal. Great care is therefore needed in validating suspected pulsar data at low signal-to-noise ratios.

6.2 Enhanced Folding Algorithm
A problem with applying the standard folding algorithm it that for larger bin numbers, less noise in the data record is averaged leading to a decrease in observed SNR and an increase of component noise frequencies. The increased noise frequencies add nothing to the pulse itself, as the pulse components are only a function of the pulse video spectrum; so removing them should lead to an improved SNR. There are various ways to filter a standard folded file and the one chosen for easy adjustment involves convolution. By multiplying the folded data spectrum by a similar target pulse spectrum and then inverting the resulting spectrum product; the folded result becomes exactly matched to the expected pulse shape. Excess high frequency noise is removed and an improved SNR results. At optimum, the pulse shape and delay are not compromised. A Gaussian shaped target of about half the width of the expected pulsar pulse gives very good results. The technique appears to maintain the optimum SNR of the standard algorithm (which occurs when the number of bins equals the ratio: period/pulse width) for all bin numbers allowing much finer pulse resolution and detail to be observed.

7. Processing Software (Appendix A2)
The very large binary files produced by the three RTL SDRs contain in-phase and quadrature samples at the RTL clock rate (>2 MHz) that can be processed directly by correlation, de-dispersion and folding software. In the case of pulsar B0329 it is possible to downsample and detect the running average amplitude at a sample rate of 1 kHz and carry out data correlation/synchronizing prior to folding. The downsampling effectively reduces the processing time of subsequent software functions. Within-band de-dispersion processing can be avoided in this design as, at 611 MHz, the pulse dispersion in a 2.4 MHz bandwidth is small (2 ms) compared to the pulsar pulse width (6.5 ms) and so de-dispersion has little effect of improving detectability and pulse fidelity. Band-to-band de-dispersion does help however, and can be carried out by the simple process of applying suitable relative time-shifting to the detected band files before combining.

Detection Software:
The software: pdetect22.exe carries out sample amplitude detection and down-sampling of the binary data files to produce text data files. This initial downsampling is usually of the order 1000, ensuring much reduced post processing times.

Correlation software:
Correlation software, cor_tim1_nv.exe compares pairs of detected pdetect22 text files corresponding to the pairs of receiver band channels to determine offsets between the band start times. The offsets guide the file trimming process using txttrim.exe to synchronize the three band data. The initial modulation range also needs removing and the data files trimmed accordingly. Once the three files are trimmed taking into account the adjustment required for de-dispersion, the files can be summed using filesum2.exe for the following folding process.

Folding software:
The folding software, rapulsar2_avg2conv.exe incorporates the SNR enhanced fold algorithm. Alternatively, an alternative processing method if available uses the MathCad 2000, DataCheck.mcd program to organise and fold the initial downsampled data files. It facilitates synchronising, trimming, de-dispersing and summing files suitable for detailed investigation. Unfortunately the CAD program is limited to files of 8 MB samples which may limit the application. The output text file is suitable for display using Windows Excel or alternative spreadsheet software.

Validation Software:
DataCheck.mcd – simultaneous checking of file first/second half correlation, multiple period folding correlation, band correlation and period search and dispersion optimisation. Period checked against trial-day topocentric value. Final validation is effected by running DataCheck.mcd and testing for expected effects by positive and negative dispersion realms.

8. Example Results - Dataset 24; SNR = 3.0:1
(See Appendix A3 for a MathCAD results of Dataset 31; SNR = 4.9:1)
Trial No: 24 was carried out on 07/08/2017. The observation time was ~ 7500s around culmination at
86° elevation. Antenna elevation beamwidth 14° set at 84° elevation. Azimuth pointing direction set at 0°. As an initial check; the measured detected mean-to-folded rms noise ratio was \(>20000 = (T_{sy} + T_{sky})/\Delta T \), indicating that \(\Delta T \) is of the order 0.01°K. A SNR of 3 is therefore equivalent to a pulsar temperature of 0.03 °K. Assuming an effective antenna capture area of 1.5m², the Jansky peak equivalent is around 27 J or 0.24 J mean. (from \(T = JA/1380 \)) This compares to the published data of up to 0.4 J for a single polarization.

In the following plot, the raw data was downsampled and detected and output at a clock period of 1 ms. The pulsar candidate is set at bin number 55 of 109 bins. Topocentric period error for best SNR is -0.375 ppm, which is well within the expected 50% range of ±1.8 ppm, bearing in mind the tolerance of the TCXO used is only 1ppm.

Figure 5a shows the final result of folding the summed 3-band data, optimally moving the maximum to the centre of the centre bin by adjusting the initial system clock offset and fold period. The SNR is calculated using all the data outside the bin maximum to determine the data mean and rms. Comparing Figures 5a and 5b shows the improved detail using the enhanced folding algorithm using 715 bins. The advantage of many bins whilst maintaining optimum SNR is evident in period searching as it does not suffer from power loss/division at the coarser bin boundaries.

Preliminary Search and Validation

In small aperture pulsar detection systems, even very long-time data records may only produce detected SNR’s of maybe only 2 to 5. Since the expected range of Gaussian noise peaks is in this range, there will always be some ambiguity in identifying a true pulsar pulse. So an extreme validation routine is necessary. Folded noise peaks can masquerade as pulsar-like signals and are a source of erroneous detections. All of the tests described can fall foul of noise/interference impersonations and pulsars themselves at this level do not have a 100% discriminating property.

Initially, a preliminary check on data quality for acceptable RFI on downsampled amplitude-detected data should be made, then, band data aligned, bands de-dispersed, combined and initial drift, RF spikes etc: removed or nulled as described in the Processing Software section above.

The combined file can then be inspected by running the folding software using the topocentric period ±0.5 ppm. If a pulsar is present then a correlating pulse will appear in the folded comparisons. The period can then be optimised followed by a selection of the validation tests below.

A recommended validation routine after candidate identification and period search to confirm identity comprises the tests…

1. Candidate topocentric frequency within an acceptable range versus the receiver clock accuracy.
2. Candidate correlation between data file sections.
3. Candidate correlation of multi-period folds.
4. Candidate correlation between receiver bands.
5. Pulse width and shape confirmed.
6. Confirmation of typical scintillation over the observation period and between bands.
7. Correct time shift, amplitude and width spread confirmed with ppm period search.
8. Correct time shift, amplitude and width spread confirmed with de-dispersion variations.
A true pulsar will pass all validation tests and show day-to-day consistency. Once positively identified daily records can be added to provide improved SNR and indication of pulse detail.

Test 2
For each chosen search period, a plot such as Figure 6 shows the correlation between the two halves (first half red, second half, blue) of the 3 bands combined data file; each half is folded separately. Strong correlation may be evident at the correct search period, as shown here at the central bin.

![Figure 6. First half file v second half file Correlation, SNRs = 2.5, 2.3](image)

There are other obvious regions where ‘noise’ peaks closely align and these must be noted and judged, based on following tests. Initial red/blue peak alignment occurs as a function of the Test 1 selected fold period, and further investigated in Test 7.

Test 3
Figure 7 shows the multi-period fold response of the summed 3-band detected data file, again showing strong correlation and pulsar pulse presence at the expected bin. For this triple period folded presentation, the second pulse period and third periods have been overlaid on the first to demonstrate central bin pulse coincidence, again in the Test 2 - adjusted central bin.

![Figure 7. Triple Period Correlation](image)

In this test the fold period is exactly 3-times the optimum pulsar period. In overlaying the three single period fold sections, the pulsar pulses overlap and to a certain extent, the inter-pulse noise sections show little correlation. At this point false Test 2 candidates can be checked.

Test 4
Figure 8 plots the correlation between bands folded individually and shows a positive correlation of the 3 band responses only at the expected central bin. This test is quite strong, as being different frequency bands, the base noise must be uncorrelated and allowing for different scintillation effects, the pulsar is still expected to appear in all bands. There is of course, still a random probability of coincidence. Note the lower signal-to-noise ratios for the individual bands.
Test 5
The pulse width and shape are evident in comparison with a 6.5ms Gaussian-shaped pulse as shown in Figure 9. There appears to be some noise distortion, which might be expected at low SNR.

![Figure 9. Pulse Width Plot – SNR = 3.6](image)

Test 6
The figure below shows the indicated SNR in each band over 30min time slots of the total record. The blue curve shows the summed version showing that less variation than the individual bands. As expected band scintillation is uncorrelated but appears to be present.

![Figure 10. Scintillation](image)

Test 7
The usual method of tuning the test period, when folding to identify the pulsar peak, is to change the period in fractional parts per million to look for a regular fall-off either side of the matching period. With weak signals and using the ‘optimum’ number of bins, this can be difficult as the relative position of the pulsar peak varies with power being shared between bins and also the peak varies as a function of the period. These problems are of less importance when enhanced folding is used to improve resolution.

Accurate pulse position movement, amplitude and width, can all be predicted to confirm the pulsed nature of the wanted signal.

Consider, if \(T \) is the data record duration and \(P \) the pulsar period and \(t \) the pulse position offset from the file start, then changing the period by \(\pm p \) parts-per-million (ppm), the first pulse start position changes to \(t-pP \) and the last pulse folded position to \(t-pT \).

So when completely folded, the average shift is \(-pT/2\) and the pulse extent increases to \(pT \).

The plot below summarizes the expected pulse width, amplitude and pulse centre position changes as a function of the period change in ppm x data duration/pulse width. The model used to derive the plots assumes a Gaussian-shaped pulse with half-height equal to the wanted pulsar pulse width. Attendant noise may, of course impose uncertainty on these predictions, but what we are looking for is consistency over a range either side of the initial set period; the half-height width of the stretched pulse can now be predicted and is a positive aid in validation.

![Figure 11. Period Search Amplitude, Position and Pulse Width Predictions](image)
The match peak occurs naturally when there is no period error, but it is interesting to note that the pulse amplitude drops to 0.5 when the period error times the data observation duration exceeds twice the expected pulsar pulse width. This is a useful pulsar test and may be used to discriminate from false candidates.

It is interesting to consider what folding does to the background noise – in fact the noise resultant comprises the residual periodicities that the intense folding finds in the background noise. Some may arise from RF interference or noise features that persist for long periods in the data record. As such some noise peaks may display similar properties to pulsar pulses and be a source of confusion. However, in most cases, the position shift of false candidates with period change may not always equal that expected of a true pulse.

The plot in Figure 12 below (red) is a peak SNR of about 4.5 from Trial No: 35. The other plots are the responses at 0.5ppm period search increments, i.e. heavy blue is ± and -0.5ppm (green ±1 ppm, etc for magenta, cyan, brown). The baseline is in 1/3 ms increments with an enhanced fold algorithm with 2143 bins. The black curve is the calculated amplitude response assuming a Gaussian-shaped pulse of 6.5 ms half height. The expected increment change is calculated as $pT/2 = 3.8$ ms/ppm, where p is the ppm change and T the record length - 7600 seconds. Actual measurement of the plot peak differences give a variation 3.8±1.0 ms.

Obviously there are some effects within the pulsar peaks due to the background noise. However, the other interesting thing to note is that the noise peaks outside the pulsar position also move and change with pulsar period change and there seems to be some correlation, certainly with the ±0.5 ppm change (check the blue/red heavy-lined plots.

For this to happen it means the residual noise peaks must be present and correlate within the pulsar period over a large part of the data record. This might be expected as this is just what the folding algorithm is meant to do and is the reason for ensuring the validation process rejects these false candidates. They invariably fail the amplitude curve match criterion as the chance of the noise spikes matching the target pulse width is probably low.

![Figure 12. Period Search Amplitude, Position and Pulse Width](image)

Test 8

The dispersion property of pulsar signals is considered the prime identifier and adds maximum weight in validation. In this section, dispersion variation is defined as the frequency delay in ms/MHz times the receiver bandwidth in MHz over and above that normally required to de-disperse the pulsar pulse. The effects of positive or negative dispersion on a pulsar pulse begin to be noticed when the magnitude of the total dispersion in ms across the band approaches the pulsar pulse width. At this point, the dispersed pulse width slightly increases and the amplitude drops by 15-20%. For larger dispersion delays, the pulse width increases to equal the delay.

The amplitude drops by 50% when the band dispersion equals twice the pulse width.

![Figure 13. Dispersion Search Amplitude, Position and Pulse Width Predictions](image)
The expected changes based on a Gaussian pulse shape are illustrated in the following plot. This idealized situation may be observed with large SNR pulsar signals but will be obscured somewhat by noise at low SNR’s; however, trends should still be present to aid data validation.

![Figure 14. Dispersion Search Measurements](image)

The two figures above the result of folding a half file of data record (Dataset 35), with negative and positive band dispersion respectively relative to the 609 MHz band. It is evident that, as the dispersion match degrades, the pulse amplitude decreases and the pulse width increases in both cases. The left hand scale gives a measure of the instantaneous SNR and the x-axis is in 1ms increments.

The plot below shows the measured results from Figure 14 plotted with the expected amplitude and pulse width responses, assuming a Gaussian-shaped pulsar pulse.

![Figure 15. Dispersion Search Measurements Summary](image)

The positive match between measurement and simple theory is remarkable, bearing in mind the pulsar peak SNR in this second half of file No. 35 is only 3.5 so noise corruption is expected but the serious scintillation of B0329 is likely to also distort the dispersed pulse shape. To overcome the scintillation problem, care was taken to select a section of data that appeared to be equally strong in the three receiver bands.

9 Conclusions

Detection of the B0329+54 pulsar is possible using a basic receiving system based on a home-made Yagi pair antenna and TCXO-driven RTL2832U DVB dongles with relatively cheap RF LNA amplifiers as described.

There is no doubt that it is easy to confuse residual folded noise peaks as pulsar detections as some noise candidates can pass most of the validation tests listed. It is not easy to validate detections but with care and persistence it can be done. Once comprehensibly validated, it is feasible to add daily folded data sets to improve overall signal-to-noise ratio. Some 13 days of early-morning data collections have been analysed and B0329 pulses recognized based on the 8-point validation scheme described within the range 3.0 to 4.9. Their arithmetic sum is shown in Figure 16. producing a combined SNR of 10.3. B0329+54 is known to exhibit leading and trailing pulses and further acquisitions might be expected to confirm their presence.
These 13 records have fortunately shown little evidence of serious RFI as most were collected in the benign environment of the early hours of the morning but it is found that data collected during the daytime and evening hours are more prone to RFI disturbance from cars and computers etc. The 5-element filter was very effective in removing digital TV RFI. The folding algorithm is known to be very rugged against interference but RFI appears to increase the base noise level, so reducing sensitivity and impair positive detection.

Experience has shown that pulsar detected SNRs above 4.0 can be confidently identified, whereas SNRs around 3.0 require a lot more work. Using the techniques described in this report together with an accurate system clock, an SNR of 2.8 has been confirmed offering the possibility of recognizing pulsar SNRs under good conditions down to 2.5.

This project may have been blessed with good pulsar scintillation conditions and low local RFI, but the choice of frequency band and antenna was well-rewarded. Had this not been the case, the next move would have been to add a further pair of antennas and made a bit more effort to lower the receiver noise temperature. Most of the work on the data to discover the pulsar signals was devoted to software processing where application of the enhanced, folding algorithm proved to be the key to making them more easily visible. It was easy to be fooled by base noise peaks as the effectiveness of the folding algorithm gives these similar properties to pulsar signals. Pulsar signals differ in several properties; they are true pulses, the frequency components are dispersed, they scintillate and finally are wideband. Passing the sum of the tests described still doesn’t guarantee pulsar detection at low signal-to-noise ratios and there must be a minimum. The challenge is to push the detection threshold lower.

References
3. Italian Amateur Radio Station http://iw5bhy.altervista.org/
8. Pulsar Software http://www.y1pwe.co.uk/RAProgs/SWPulsars.zip

Appendix A1 Control and Data Collection Software
For background, refer to the ‘Data Collection’ section in the main paper.

Control and Data Collection Software

\texttt{run_prg_at} – used to run data collection and switch modulation software simultaneously at a chosen time.

\begin{verbatim}
run_prg_at \text{Uses PC clock to run any program at a set time.}
run_prg_at \text{\"program.exe\"<hr min sec>}
\end{verbatim}

\texttt{rtlsdr.bat} – batch file to run rtl software in parallel.

Command format example:- \texttt{run_prg_at \text{\"rtlsdr.bat\" 09 00 00}}

\begin{verbatim}
start /b rtl_sdr22r -d11 trial1.bin -N -g 39 -n 20e9 -f 609e6
start /b rtl_sdr22r -d22 trial2.bin -N -g 39 -n 20e9 -f 611e6
start /b rtl_sdr22r -d33 trial3.bin -N -g 39 -n 20e9 -f 613e6
\end{verbatim}
SwitchMod.py - RF switch modulator control.

Modulates the switch with a random on and off code for up to 10 seconds.
Command format example: `- run_prg_at “python SwitchMod.py” 09 00 00`

```python
# pwe SwitchMod.py  02:10:2017
# Adafruit FT232H Breakout board
# Using this USB GPIO board to control a microwave PIN-diode switch

# #Switch modulation program
# #Import standard Python time library.
import time
# # Import GPIO and FT232H modules.
import Adafruit_GPIO as GPIO
import Adafruit_GPIO.FT232H as FT232H
import random
import sys
# Temporarily disable the built-in FTDI serial driver on Mac & Linux
FT232H.use_FT232H()
# Create an FT232H object that grabs the first available FT232H device found.
ft232h = FT232H.FT232H()
# Configure digital inputs and outputs using the setup function.
# Note that pin numbers 0 to 15 map to input pins D0 to D7 then output pins C0 to C7 on the board.

ft232h.setup(8, GPIO.OUT)                   # Make pin C0 a digital output.

# for-loop turning the switch/LED on and off.
for x in range(0,100):
    # Set pin C0 to a high level so the switch/LED turns off.
    ft232h.output(8, GPIO.HIGH)
    # Sleep for random sub 0.1 second.
    time.sleep(random.random()/10)
    # Set pin C0 to a low level so the switch/LED turns on.
    ft232h.output(8, GPIO.LOW)
    # Sleep for random sub 0.1 second.
    time.sleep(random.random()/10)
#exit leaving the switch on
sys.exit(0)
```

A2. Data Processing Software

Includes the processes of downsampling/detection, band data timing/correlation and data folding.

Detection Software:

`pdetect22.exe` carries out amplitude detection and down-sampling of the binary data files.
Command format example: `pdetect22 trial1.bin trial1.txt 2.0 1.0 1`

```
<table>
<thead>
<tr>
<th>pdetect22.exe</th>
<th>Inputs RTL .bin files, downsamples/square-law detects. Outputs text file of the video integrated detected power × time response. It integrates blocks proportional to the inverse of the video band figure. The divisor figure (normally 1) reduces the analysed file to this factor for test purposes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdetect22 &lt;datfile.bin&gt; &lt;outfile.txt&gt; &lt; RTL data rate (MHz)&gt; &lt;Video Band (kHz)&gt; &lt;File divisor&gt;</td>
<td></td>
</tr>
</tbody>
</table>
```
This initial downsampling is usually of the order 1000, ensuring much reduced post processing times.

Correlation software:

`cor_tim1_nv.exe` correlates the initial random modulation in the three RF bands and indicates the relative offset in the samples. Offsets and the initial 10 seconds of modulation can be removed with `txttrim2.exe`.

Command format:
```
cor_tim1_nv test11.txt  test12.txt  1024 16384 10
```

<table>
<thead>
<tr>
<th><code>cor_tim1_nv</code></th>
<th>Inputs <code>pdetect22</code> text files. Takes first block of ‘sample length’, and correlates this block along the second .txt file and vice versa, to find the correlation peak. Output text file contains the summary. (sample and blocks power 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>txttrim2</code></td>
<td>Input a <code>pdetect22</code> text file and number of samples to remove from the beginning and end of file to output to a second text file</td>
</tr>
<tr>
<td><code>filesum2</code></td>
<td>Sums four <code>pdetect22</code> text files with weighting factors specified by gain entries in the command line. Intended for Quad RTL receiver measurements. Prints gains, mean and rms level of output data.</td>
</tr>
</tbody>
</table>

Once the three files are trimmed taking into account the adjustment required for de-dispersion, preferably, equal length files are summed for the following folding process.

Folding software:

The folding software, `rapulsar2_avg2conv.exe` incorporates the SNR enhanced fold algorithm.

Command format:
```
rapulsar2_avg2conv test1.txt  outtest1.txt  0.001 714 714.45 4.0
```

<table>
<thead>
<tr>
<th><code>rapulsar2_avg2conv</code></th>
<th>For downsampled/detected .txt files. (from <code>pdetect22</code>) Integrates scalar power data synchronously on a timebase set at or very near to the pulsar period. Convolves data with Gaussian target. Output text file is the averaged pulse shape at an arbitrary initial phase. Optimum target pulse is 50-70% real</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rapulsar2conv</code></td>
<td>As <code>rapulsar2_avg2conv</code> operates on RTL bin files. Outputs a text file that describes the averaged pulse shape. Second column is improved SNR convolved data.</td>
</tr>
</tbody>
</table>
A3. MathCad Software

DataCheck.mcd - August 2017 pwe - Input 3-channel band data nominally text files in 1ms steps.
Checks, data quality, data synchronism, half file correlation, band correlation, multi-period folding and period

\[
x := 0..8192 - 1 \quad \text{Max} := 12300006 \quad \text{Min} := 12300000 \quad \text{Mm} := \frac{\text{Max} - \text{Min}}{2} \quad Q := 1
\]
\[
z := \text{Min}.. \quad \text{Max} - 1 \quad \text{Z} := 0.. \text{Mm} - 1 \quad \text{Mm} = 3.69 \times 10^6
\]

Band Input Data:

\[
\begin{align*}
B1 := \text{READPRN}("try311pd.txt") \\
B2 := \text{READPRN}("try312pd.txt") \\
B3 := \text{READPRN}("try313pd.txt")
\end{align*}
\]

\[
b1x := B1(\text{X})
\]
\[
b2x := B2(\text{X})
\]
\[
b3x := B3(\text{X})
\]
\[
\begin{align*}
\text{B1dx} := B1(\text{X} + 29 + 2 \times \text{Dd}) \\
\text{B2dx} := B2(\text{X} + 13)
\end{align*}
\]

Pulsar Topocentric period
Change numerator for 1/8 ppm variation
\[
\text{PP} = 714.47928714 \left(1 + \frac{2.77}{8000000}\right) \left(1 + \frac{\text{Pp}}{1000000}\right)
\]

All-band sum: change m factors above to equalise channel amplitudes:
\[
\text{Sum}_x := \text{B1dx} \cdot m1 + \text{B2dx} \cdot m2 + \text{B3dx} \cdot m3
\]

Raw Data plot - check file synchronism

![Raw Data plot](image1)

Data plot every Qth data element

![Data plot](image2)

Sum Data plot every Qth data element

![Sum Data plot](image3)

k := 0..N - 1 \quad \text{PPP} := \text{MPP}

Folding algorithm:

\[
\text{mmm}_k := \text{floor} \left[\frac{z}{\text{PPP}} - \text{floor} \left(\frac{z}{\text{PPP}} \right) \right] \quad \text{N}
\]

\[
\begin{align*}
\text{pmU}_k := 0 & \quad \text{pmL}_k := 0 & \quad \text{pm1}_k := 0 & \quad \text{pm2}_k := 0 & \quad \text{pm3}_k := 0 \\
\text{couU}_k := 0 & \quad \text{couL}_k := 0 & \quad \text{pm2k} := 0 & \quad \text{cou}_k := 0
\end{align*}
\]
Multi-period fold number: $X = 12029$

Offset start value: $\begin{align*}
M &= 1 \\
N &= 715 \cdot M \\
H &:= \text{floor}(\frac{N}{2}) \\
\end{align*}$

Number of fold bins:

$$
\begin{array}{l}
\text{Triangular} \\
ff(x, j, d) := \text{if} \begin{cases}
 j < x < j + d, 1 - \frac{x - j}{d} < 0 \\
 j < x < j + d, 1 - \frac{x - j}{d} > 0
\end{cases}
+ \text{if} \begin{cases}
 j > x > j - d, 1 - \frac{x - j}{d} < 0 \\
 j > x > j - d, 1 - \frac{x - j}{d} > 0
\end{cases}
\end{array}
$$

Dispersion variable $Dd = 0$

Target spectrum

$$
zz := 0..(N-1) \\
a_{zz} := f_c(\text{floor}(\frac{N}{2}), 5.0) \\
fa := \text{cfft}(a)
$$

Fold Statistics

Data spectrum

$$
\begin{align*}
\text{fb}1 &:= \text{cfft}(b1) \\
\text{fb}2 &:= \text{cfft}(b2) \\
\text{fb}3 &:= \text{cfft}(b3)
\end{align*}
$$

Fold Convolver

$$
\begin{align*}
\text{Fco}(\text{bdat}, \text{bcnt}, \text{bno}) &:= \begin{align*}
\text{for } x &\in 0..N-1 \\
\text{Ox} &:= \frac{\text{bdat}_x}{\text{bcnt}_x} \\
\text{fto} &:= \text{cfft}(\text{Oo}) \\
\text{for } x &\in 0..N-1 \\
\text{foto} &:= \frac{\text{fa}_x}{\text{fa}_0} \cdot \text{fto}_x \\
\text{ifto} &:= \text{icfft}(\text{foto}) \\
\text{mto} &:= 0 \\
\text{for } x &\in 0..N-1 \\
\text{mto} &:= \text{mto} + \text{ifto}_x \\
\text{mto} &:= \frac{\text{mto} - \text{fto}_{\text{bno}}}{N-1} \\
\text{ifto} &:= \text{mto}
\end{align*}
\end{align*}
$$

Target shape functions:

$$
\begin{align*}
fe(x, j, d) &:= \exp[-4 \text{ln}(2) \left(\left(\frac{x - j}{d} \right)^2 \right)] \\
\end{align*}
$$
Lower half of file

Upper half of file

\[\text{couL}(\text{mm}_{z+\text{Min}}) := \text{couL}(\text{mm}_{z+\text{Min}}) + 1 \]
\[\text{pmL}(\text{mm}_{z+\text{Min}}) := \text{pmL}(\text{mm}_{z+\text{Min}}) + \text{Sum}_{z+\text{Min}} \]
\[\text{couU}(\text{mm}_{z+\text{Min}+\text{Mn}}) := \text{couU}(\text{mm}_{z+\text{Min}+\text{Mn}}) + 1 \]
\[\text{pmU}(\text{mm}_{z+\text{Min}+\text{Mn}}) := \text{pmU}(\text{mm}_{z+\text{Min}+\text{Mn}}) + \text{Sum}_{z+\text{Min}+\text{Mn}} \]

Half file statistics at bin H: mean, rms, SNR and mean/rms

\[
\begin{pmatrix}
1.172 \\
6.224 \times 10^{-5} \\
3.4 \\
1.883 \times 10^{4}
\end{pmatrix}
\]

\[
\begin{pmatrix}
1.183 \\
5.932 \times 10^{-5} \\
3.559 \\
1.995 \times 10^{4}
\end{pmatrix}
\]

Convolved Spectrum

First half file - second half file folding correlation:
Total SNR statistics

\[
\begin{align*}
\text{pm}(m_{mm}) & := \text{pm}(m_{mm}) + \text{Sum}_y \\
\text{cou}(m_{mm}) & := \text{cou}(m_{mm}) + 1
\end{align*}
\]

Total Band Sum fold - SNR

Mean Power: \(\text{Fs}(\text{pm}, \text{cou}, H)_1 = 4.308 \times 10^{-5} \)

All band total SNR: \(\text{Fs}(\text{pm}, \text{cou}, H)_2 = 4.893 \)

Radiometric noise ratio \(\text{Fs}(\text{pm}, \text{cou}, H)_3 = 2.734 \times 10^4 \)

\[
\begin{align*}
\text{Fs}(\text{pm}, \text{cou}, H) & = \begin{pmatrix} 1.178 \\ 4.308 \times 10^{-5} \\ 4.893 \\ 2.734 \times 10^4 \end{pmatrix}
\end{align*}
\]

Band SNR statistics

\[
\begin{align*}
\text{pm}1_{(mm)} & := \text{pm}1_{(mm)} + m1B1d_z \\
\text{pm}2_{(mm)} & := \text{pm}2_{(mm)} + m2B2d_z \\
\text{pm}3_{(mm)} & := \text{pm}3_{(mm)} + m3B3d_z
\end{align*}
\]

3 - Bands overlapped - de-dispersed - showing correlation

Band summaries

\[
\begin{align*}
\text{Fs}(\text{pm}1, \text{cou}, H) & = \begin{pmatrix} 0.389 \\ 2.571 \times 10^{-5} \\ 2.368 \\ 1.511 \times 10^8 \end{pmatrix} \\
\text{Fs}(\text{pm}2, \text{cou}, H) & = \begin{pmatrix} 0.391 \\ 2.248 \times 10^{-5} \\ 1.562 \\ 1.741 \times 10^4 \end{pmatrix} \\
\text{Fs}(\text{pm}3, \text{cou}, H) & = \begin{pmatrix} 0.398 \\ 2.808 \times 10^{-5} \\ 4.089 \\ 1.417 \times 10^8 \end{pmatrix}
\end{align*}
\]

Page 4
1/8ths file folding correlation:

\[zm := \frac{\text{Max}}{8}, \quad zd := \ldots 7 \]

\[z6 := 0, \ldots, zm - 1 \quad \text{couz}_0 := 0, \quad \text{pmz}_0 := 0 \]

\[\text{couz}_{\text{mmz}_3, zd} := \text{couz}_{\text{mmz}_3, zd + 1} \]

\[\text{pmz}_{\text{mmz}_3, zd} := \text{pmz}_{\text{mmz}_3, zd + 1} + \sum_{zd} \text{zm} \]

\[S_{zd, k} := \text{Re} \left\{ \text{Fco} \left(\text{pmz}_{zd}, \text{couz}_{zd}, \text{H} \right)_k \right\} \]

\[S_{zd, k} := \left(\sum_{zd} S_{zd, k} \right) \frac{1}{\sqrt{8}} \]

Ovelapped 1/8th of file showing all section correlation

Waterfall display

\[S_{0, k} 4 \times 10^{-4} \]

\[S_{1, k} 2 \times 10^{-4} \]

\[S_{2, k} 1 \times 10^{-4} \]

\[S_{3, k} 0 \times 10^{-4} \]

\[S_{4, k} 2 \times 10^{-4} \]

\[S_{5, k} 0 \times 10^{-4} \]

\[S_{6, k} 4 \times 10^{-4} \]

\[S_{7, k} 6 \times 10^{-4} \]

mod \(k, \frac{N}{M} \)
A4. Yagi Antenna Design

17-element Yagi - YagiCAD6 6.2 by Paul McMahon VK3DIP

Frequency: 611 MHz

Design Table:

<table>
<thead>
<tr>
<th>Element</th>
<th>Length (m)</th>
<th>Position (m)</th>
<th>Diameter (m)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector</td>
<td>0.269</td>
<td>0.000</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Di-pole</td>
<td>0.255</td>
<td>0.115</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 1</td>
<td>0.237</td>
<td>0.155</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 2</td>
<td>0.235</td>
<td>0.245</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 3</td>
<td>0.232</td>
<td>0.353</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 4</td>
<td>0.230</td>
<td>0.479</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 5</td>
<td>0.227</td>
<td>0.619</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 6</td>
<td>0.224</td>
<td>0.770</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 7</td>
<td>0.222</td>
<td>0.929</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 8</td>
<td>0.220</td>
<td>1.094</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 9</td>
<td>0.218</td>
<td>1.267</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 10</td>
<td>0.218</td>
<td>1.447</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 11</td>
<td>0.216</td>
<td>1.634</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 12</td>
<td>0.215</td>
<td>1.825</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 13</td>
<td>0.214</td>
<td>2.019</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 14</td>
<td>0.213</td>
<td>2.217</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Director 15</td>
<td>0.212</td>
<td>2.419</td>
<td>0.006</td>
<td>Aluminium</td>
</tr>
</tbody>
</table>

Note: Positions measured from the first reflector element

- Boom: 0.0254 m square, 2.7 m long.
- Elements in 6 mm central holes, held by self-tapping steel screws.
- Driven di-pole mounted in 10 mm perspex tube insulation
- Input impedance: 44.59 + j0.74 ohms
- Forward gain: 16.9 dBi
- Front to back ratio: 23.2 dB
- 3 dB Beamwidth E: 27°
- 3 dB Beamwidth H: 28.5°

A5. 5-Element Interdigital Filter

Design data for a 5 section interdigital bandpass filter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre Frequency</td>
<td>611 MHz</td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>System Impedance</td>
<td>50 Ohm</td>
</tr>
<tr>
<td>Cutoff Frequency</td>
<td>608 MHz and 614 MHz</td>
</tr>
<tr>
<td>Bandwidth (3dB)</td>
<td>6.4 MHz</td>
</tr>
<tr>
<td>Fractional Bandwidth</td>
<td>0.0098</td>
</tr>
<tr>
<td>Filter Q</td>
<td>96.136</td>
</tr>
<tr>
<td>Estimated Qu</td>
<td>1719.66</td>
</tr>
<tr>
<td>Loss, based on this Qu</td>
<td>2.162 dB</td>
</tr>
<tr>
<td>Passband Delay</td>
<td>223.128 ns</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Wavelength</td>
<td>122.66 mm or 4.829 inch</td>
</tr>
<tr>
<td>Length interior Element</td>
<td>116.62 mm or 4.591 inch</td>
</tr>
<tr>
<td>Length of end Element</td>
<td>116.81 mm or 4.599 inch</td>
</tr>
<tr>
<td>Ground plane space</td>
<td>25.4 mm or 1.000 inch</td>
</tr>
<tr>
<td>Rod Diameter</td>
<td>6 mm or 0.236 inch</td>
</tr>
<tr>
<td>End plate to centre of Rod</td>
<td>15 mm or 0.591 inch</td>
</tr>
<tr>
<td>Tap to shorted End</td>
<td>3.75 mm or 0.148 inch</td>
</tr>
<tr>
<td>Impedance end Rod</td>
<td>98.069 Ohm</td>
</tr>
<tr>
<td>Impedance inner Rod</td>
<td>101.003 Ohm</td>
</tr>
</tbody>
</table>
Impedance ext. line : 50.000 Ohm

<table>
<thead>
<tr>
<th>#</th>
<th>End to Centre</th>
<th>Centre-Centre</th>
<th>G[k]</th>
<th>Q/Coup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00 (0.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15.00 (0.591)</td>
<td>43.54 (1.714)</td>
<td>1.706</td>
<td>0.652</td>
</tr>
<tr>
<td>2</td>
<td>58.54 (2.305)</td>
<td>45.27 (1.782)</td>
<td>1.230</td>
<td>0.534</td>
</tr>
<tr>
<td>3</td>
<td>103.81 (4.087)</td>
<td>45.27 (1.782)</td>
<td>2.541</td>
<td>0.534</td>
</tr>
<tr>
<td>4</td>
<td>149.09 (5.869)</td>
<td>43.54 (1.714)</td>
<td>1.230</td>
<td>0.652</td>
</tr>
<tr>
<td>5</td>
<td>192.63 (7.584)</td>
<td>0.00 (0.000)</td>
<td>1.706</td>
<td>1.807</td>
</tr>
<tr>
<td>6</td>
<td>207.63 (8.174)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**** Dimensions, mm (inch) ****

Height : 122.66 mm or 4.829 inch
Length : 207.63 mm or 8.174 inch
Depth : 25.40 mm or 1.000 inch

Construction:
Sides: 1" by 1/4" Aluminium bar drilled and assembled using self-tapping screws.
Top/Bottom: 1/16" Aluminium plate drilled and assembled using self-tapping screws.
Elements: 6 mm Copper rod, slotted in 6 mm holes and held by self-tapping screws.
Tuning screws: M6 bolts with locking nuts

A6 Combining RTL Binary Files

In Appendix A6.2 the raw 3-channel binary data was first detected, then correlated, files trimmed, then finally combined. The alternative, described in this section is to first cross correlate the raw binary files, trim them to synchronise and size-equalise before combining multiple bands.

An example using data from trial try31 follows.
Raw IQ files, try311.bin, try312.bin and try313.bin, were derived from 3-channels of the Quad RTL receiver where all three units are clocked equally by a nominally 1ppm accuracy 2.8MHz crystal. The files were acquired on 11 October 2017 at 02:15:00.
The RTL units were initiated in Linux by a batch file containing:

```bash
rtl_sdr22r -N -f 609e6 -d11 -s 2.4e6 -g 37.2 -n 23.04e9 try311.bin &
rtl_sdr22r -N -f 611e6 –d22 -s 2.4e6 -g 37.2 -n 23.04e9 try312.bin &
rtl_sdr22r -N -f 613e6 –d33 -s 2.4e6 -g 37.2 -n 23.04e9 try313.bin
```

The data collection period was 9600seconds (2hr 40min).

Cross Correlation Software:
`cor_tim2_n` carries out cross correlation of the 3 binary data files in pairs.
Command format example:

```bash
cor_tim2_n try311.bin try312.bin try3112.txt 262144 2049152 10
```

<table>
<thead>
<tr>
<th>cor_tim2_n</th>
<th>Cross-correlates two .bin files using a section equal to the sample length over a file range equal to the specified size of a block. Repeats for n blocks. The terminal display indicates the position of any correlation peak together with the offset between the files. Output text file contains the summary.</th>
<th>cor_tim2_n</th>
<th><infil1> <infil2> <outfile> <sample length> < block size> <No. of i/q blocks tested></th>
</tr>
</thead>
</table>

For the three files here the leading and trailing bytes can be trimmed with the `filetrim` program,

```bash
filetrim <infil> <outfile> <Start Bytes cut> <End Bytes cut>
```
to make them synchronised in time; the parameter values in this case are,

```bash
filetrim try311.bin try311s.bin 55140596 0
filetrim try312.bin try311s.bin 55064982 75514
filetrim try313.bin try311s.bin 55000000 140596
```

If thought necessary, these files can be de-dispersed individually or once the 3 binary files are combined. Note: the large binary IQ files can demand exceedingly long processing times.
During the recording, each band is clocked at 2.4MHz with band centres 609, 611 and 613 MHz and produces in-phase and quadrature signals in 8-bit offset binary code. Each RTL has its own gain response g_1, g_2, and g_3, and needs compensation before combining. For the Try31 data set the gains of 2.1, 0.9, 2.2 equalise the mean band detected DC. As the bands overlap the number of output spectrum bins is different to the sum of the input spectra bins. The data clock is 2.4MHz and the added spectral band is 6.4MHz due to the fixed band centres. In this example, assuming 0.2MHz bins, the output block is 32 bins, meaning each band input data block is 12 bins. The conventional binary FFT is fine for the output 32 point inversion but the Singleton algorithm is used for the 12-point FT.

The program `bin3_combineg` carries out the following combining functions for the time-synchronised `try31s` data set,

1. Complex FT of each band 12 sample pair block. The bands overlap and as the data is in zero-IF form, the FT positive and negative frequency output needs swapping before combining.
2. Add the adjusted bands up across the overlap regions.
3. Swap the two spectrum halves.
4. Inverse FT.
5. Repeat for the further 12-point band blocks and add the 32-point output blocks in series. The output block sample period is equivalent to clocking at 6.4MHz.

The program sequence with $N=12$ is illustrated in Figure A6.1.

```
bin3_combine6g   try311s.bin   try312s.bin   try313s.bin   2.1  0.9  2.2   try31sc.bin
```

The combined file can be de-dispersed and detected as for normally collected files. Note, $N=6$ appears faster and just as accurate.