HAARP Capabilities

Geophysical Institute University of Alaska Fairbanks HAARP Ionospheric and Radio Science Laboratory

 $((\gamma))$

lonospheric Research Instrument (IRI) Phased Array

• Static performance

- Beam shape, beam pointing
- Active impedance (scan impedance)
- Frequency dependent effective radiated power (ERP)

Capabilities

- 360 dipoles with independent phase and amplitude control
- Amplitude/Power controlled by fast automatic level control (ALC) circuit in each transmitter
 - 10 kW maximum output per dipole
 - Programmed amplitude control voltage can be static or dynamic
 - Amplitude modulation (AM), power stepping, etc.
 - Extremely linear amplitude variation vs. control voltage down to 10 watts per transmitter

Capabilities

- Phase controlled by fast phaselock-loop (PLL)
- RF source is distributed throughout array using equal-length coax cables
- Feedback signal taken from transmitter output forward sample (directional coupler)
- Phase can be static or dynamic with ~10 usec minimum change time
- PLL can run open-loop with precorrections for rapid beam scanning

Capabilities

- 360 Dipole currents are monitored (digitized) in realtime
- Amplitude and phase (I&Q) recorded at 200 kHz rate
- Snapshots of captured data used to calculate radiation pattern based on real dipole currents

Limitations

- Dipoles are large structures, closely spaced, and therefore coupled electromagnetically
- Active ALC and PLL maintains correct forward power and phase despite tight coupling
- However, coupling strongly affects the impedance seen by each transmitter
- Transmitters must be tuned to something close to this "active impedance"
- Severely mismatched transmitters may not be able to operate (or may operate at reduce output)

Limitations

- Cannot switch between very different phase conditions without retuning
- Beam pointing angle change > 15 deg requires retuning
- Broadened beam requires retuning vs. normal beam
- Most "novel" beam modes require retuning vs. normal beam
- Retuning requires up to 30 seconds OFF
- Power can only be reduced from 10 kW per dipole
- Gaussian beam modes (tapered excitation) always result in lower ERP

Naturally Inspiring.

- IRI Array is designed to operate best with a normal beam within 15 deg of broadside
- Antenna matching circuits were optimized for this condition, given the known coupling
- Low-frequency performance (e.g., < 4 MHz) actually requires coupling
- Isolated dipoles have nearly full reflection without neighbors

IRI Array Dipole Coupling

- Dipole coupling affects our ability to operate with arbitrary phasing
- Impedance may improve or worsen depending on neighboring phases and operating frequency
- Significant impedance mismatch (vs. 50 ohms) means high reflection, low radiated power
- If impedance mismatched is too high, transmitter may not be able to operate at all

HAARP IRI Array Effective Radiated Power

Naturally Inspiring.

Control system features
Modulation capabilities
Examples

IRI Control System RF Capabilities

- Two Independent RF Signal Generators
- Two RF distribution channels -equal length coax to each transmitter
- Each transmitter can select RF1 or RF2 source via control bits (rapid switching)
- Split array/subgrids can use one or two RF sources (dual frequency)

IRI Control System RF Capabilities

- Frequency ramps/steps can be accomplished with:
 - FM waveform (analog waveform applied directly to RF source)
 - Arbitrary waveform shape, +/- 100 kHz maximum frequency deviation
 - 30 kHz maximum waveform frequency

Naturally Inspiring

IRI Control System RF Capabilities

- Single RF source stepping
 - 100 msec OFF required between steps
 - Uniform or arbitrary steps, 200 kHz bandwidth (or more at higher HF)
- Dual RF source toggling (minimum 100 msec dwell at each step)
 - Allows fast steps with no off time
 - Requires both RF sources, so no split array

Naturally Inspiring.

Modulation Capabilities

- Two Independent Modulation Sources
 - Direct digital synthesis at 200 kHz
 - Digital waveform data injected directly into realtime control data stream
 - D/A conversion takes place at transmitter input

IRI Control System Modulation Capabilities

- Modulation states locked to power/phase control states
 - Allows synchronized power control and beam pointing with modulation change
 - Starting phase always well defined with respect to experiment start (i.e. GPS time)
- Arbitrarily complex sequences of modulation states can be created
- Timing and frequency accuracy provided by 10 MHz rubidium frequency standard
 - Locked to GPS for long-term stability
 - Distributed throughout site for locked receiver applications

Naturally Inspiring.

Modulation Capabilities AM and FM

• Waveforms

- Sine, half-sine, rectified sine (sqrt sine), square, sawtooth
- Any waveform that can be defined as a function of phase angle can be added
- Any waveform can be used with any frequency type (e.g. fixed or ramp)

Naturally Inspiring

Modulation Capabilities AM and FM

- Modulation frequencies
 - Fixed, linear ramp, log ramp, parabolic ramp
 - 0-30 kHz range
 - All modulation frequencies are precise -- locked to common 10 MHz reference

Modulation Capabilities AM and FM

- For very complex waveforms, user can provide a WAV format file
- Any sample rate -internally resampled to 200 kHz
- -32767/+32767 (16 bit signed) data range translates to 0-100% output (amplitude modulation)

IRI Control System Pulse

- Direct Digital Synthesis at 1 MHz sample rate
- Single Pulse (width, delay)
 - 80 dB on/off ratio
 - Minimum pulse width: 10 µsec
 - Width/delay resolution: 1 µsec
 - PRF: 0-30 kHz

IRI Control System Pulse

- Pulse Train (arbitrary list of widths and delays)
- Coded Pulse
 - Barker (2-13 chips) or user supplied (e.g. "11100010010")
 - Coded via bi-phase (0/180 RF phase switching)
 - 10 µsec minimum chip length

IRI Control System Pulse

- Pulse shaping applied at transmitter low-level drive
 - Selectable risetime (1 -10,000 µsec)
 - Selectable shape: 1% truncated gaussian or raised cosine
 - 100 MHz D/A shaping via look-up table

Summary

- HAARP offers a great advantage to active ionospheric modification experiments
 - High radiated power (3.6 MW transmitted, up to 4 GW ERP)
 - Tremendous flexibility in:
 - Transmit frequency
 - Beam control
 - Split array
 - Complex modulation types
 - Software-based control system

Questions

Contact Information

HAARP Facility **Ionospheric and Radio Science** Laboratory **Geophysical Institute** University of Alaska Fairbanks Gakona, Alaska 99586 907-474-1100 http://www.gi.alaska.edu/haarp **Facebook:** www.facebook.com/pg/UAFHAARP **Twitter:** @UAFHAARP

