

The British Astronomical Association

VARIABLE STAR SECTION

CIRCULAR 59

"LIGHT CURVE"

JANUARY 1985

Head Office: Burlington House, Piccadilly, London W1V ONL. Telephone 01-734 4145

CIRCULAR 59

CONTENTS

keg Shinkileid	1
Binocular Programme 1983 Report - Melvyn Taylor	1
Binocular Programme Observational Totals 1983: Stars Observers	2 3
BV Tauri	3
Possible additions to the Main Programme	4
Scandinavian Binocular Variable Star Charts - John Parkinson	4
Eclipsing Binary Programme - John Isles	6
UK Nova/Supernova Patrol - Guy Hurst	8
Some Medlum Brightness Red Variables - Ian Middlemist	10
Supernova/Nova Chart Catalogue	12
Charts for TZ Cas and X Sge	13
RZ Leo	14
Minima of Eclipsing Binaries: 1979-81 - John Isles	14

STOP PRESS

- inside back cover

Section Officers / C	Circular & Chart Charges	-	inside front cover
Changes of Address a	and New Members	_	inside back cover

****0****

Printed in England by Castle Printers of Wittering, Shore Road, East Wittering, West Sussex.

Reg Shinkfield

It is with regret that we record the death, at the age of 82, of Reg Shinkfield, of Adelaide, Australia. Reg contributed a large number of observations to the VSS over a very long period, which began in 1927. He also took part in the work of various other observational sections. His work for the Variable Star Section was of particular importance in the years between the late 50's and the late 60's, when the number of observers was low and observations were few in number. It is hope that a full obituary notice will be published in the Journal at a later date.

1983 Binocular Programme - Secretary's Report

It is encouraging to see a 32% increase in the number of observations, which totalled 15,423 from 52 binocular observers during the year 1983. (In 1982 the figures were 11,681 observations from 51 observers.) The leading observers: Albrighton (1500), Fraser (1065), Hather (1247), Middlemist (1438), Taylor (1470), Toone (1819) and Worraker (1562) provided some 65% of the grand total. The following members did useful charting work or else took an interest in particular stars: Agar, Allmand, Baker, Betts, Bone, Chaplin, Collinson, Hoste, Howarth, Keenan, Moore, Parkinson, Ramsay, Saville, Shanklin, Spooner and Srinivasani. The Binocular Secretary would like to thank all members and contributors for their observational work.

As just mentioned, a few observers are giving special attention to some of the under-observed stars, but even so, more work is required on the fainter or 'difficult' objects. For example, FZ Cephei with only four estimates made in 1983 is a good case! There are some 35 objects for which we require more data urgently.

Over the last 18 months the stars suspected of variability have been reassessed in terms of being on a separate programme within the binocular group. Three sheets (A4 size) have been produced showing 24 'suspects' on 5° square fields. These stars deserve careful attention from both experienced visual and photoelectric observers. BD+61°0668 (Cam), F1 69 Draconis and BD+47°2801 (Cyg) are not found in the New Catalogue of Suspect Variables (Moscow, 1982), and consequently VSS observers have the opportunity of some 'pioneering' work.

The previously named CSV 927 (Cep) has been designated OV Cephei and is due to be taken off the short set of 'suspects'. N.B. It has been decided to drop the under-observed Fl 33 (Cet) (= CSV 5895 = NSV 00422) from the programme. SAO 037607 (And), SAO 021020 (Cas) and BD+23⁰1192 (Gem), which are better placed for northern hemisphere observers, have been <u>added</u>. The stars in the list for 1983 have formed the binocular programme for 1984. As from 1985 Jan 1, three stars are being omitted: CO Aurigae, Fl 33 (Cet) and NQ Gemini.

Star totals for 1983 - Binocular Group

RS And	76	RW	226	IS Gem	31
SU	60	RX	100	NQ	16
ΤZ	74	SS	91	+23 01192	0
AQ	52	AR	203	X Her	244
ΒZ	35	DM	93	ST	49
SAO 037607	1	FZ Cep	4	SX	14
V Aql	79	ov	6	UW	126
V450	110	μ	73	IQ	7
V1293	71	NSV 13656	60	OP	185
NSV 12088	52	NSV 13729	58	V566	35
V Ari	60	NSV 14680	134	g Her	213
UU Aur	251	NSV 00422	(Cet) 19	U Hya	66
AB	225	RR CrB	112	SX Lac	42
AE	222	SW	118	NSV 14213	90
СО	78	Т Суд	65	NSV 14260	81
NO	36	RU	37	RX Lep	60
Ψ ¹	10	RV	60	Y Lyn	171
NSV 02537	370	TT	48	SV	30
W Boo	21	AF	310	NSV 03597	19
RV	34	СН	417	R Lyr	83.
RW	37	V460	53	XY	182
RX	144	v973	101	δ ²	55
UV	143	V1351	36	S Mon	37
U Cam	78	V1624	24	RV	92
RY	92	P	147	SX	76
ST	177	NSV 12247	16	X Oph	118
UV	98	NSV 12247	41	v2048	107
VZ	69	NSV 13784	84	W Ori	59
ZZ	116	NSV 13857	29	BL	75
$+61^{\circ}0668$	103	+47 2801	8	BQ	124
X Cnc	123	U Del	178	CK	75
RS	153	EU	181	NSV 02917	76
RT	44	NSV 13150	85	AG Peg	161
V CVn	229	RY Dra	427	GO	101
Y	167	TX	277	X Per	247
י 1 נו	143	UW	73	SU	90
W CMa	34	UX	29	AD	90 98
w CMa WZ Cas	107	VW	62	KK	73
w2 Cas V377	142	vw AH	146	PR	73 95
V391	76	AT	97	Z Psc	59
V393	107	Fl 69	4	TX	37
V393 V465	28	TU Gem	41	TZ	32
	28 34				
NSV 00021		TV	127	S Sct	53
NSV 00436	76	WY	106	Y Tau	93 87
NSV 00650	110	BN	70	TT	
SAO 021020	12	BQ	23	BU	109
W Cep	195	BU	145	CE	28
RU	124	DW	19	NSV 01280	52

.

.

Star totals - cont.

NSV 01702 Tau W Tri Z UMa RY ST	54 59 235 195 113	TV UMa VW VY V UMi RR	65 81 79 130 88	RW Vir RX SS SW BK	43 39 67 38 34
D	Inocular	Programme Obse	erver lota	115 1985	
	Obs.		Obs.		Obs.
Agar	104	Horton	46	Saville	413
Albrighton	1500	Hoste	110	Saw	21
Allmand	361	Howarth	78	Shanklin	256
Baker	124	Hurst	89	Smith, H.	143
Barry	50	Januszewski	50	Smith, J.	• 47
Bell	85	Keenan	293	Spooner	44
Betts	151	Kelly	20	Srinivasani	422
Bone	426	Maris	233	Taylor	1470
Chaplin	206	Markham	332	Thorpe	106
Collinson	187	McAdam	21	Toone	1819
Dryden	23	Middlemist	1438	Worraker	1562
Fraser	1065	Moore	21		
Gardner	136	Parkinson	105	11 others	56
Grundy	33	Poyner	31		
Hather	1247	Ramsay	99	Total	15 423

BV Tauri

An interesting result of the examination of Tristram Brelstaff's observations of the eclipsing binary BV Tauri is the discovery that the quoted GCVS period of 12.349 days is gravely in error. The true period is of the order of 0.93044 days.

Tristram Brelstaff's observations were made over the years 1981 to 1984, at first only once nightly, until it became obvious that the quoted period - which dates back to a publication by Kaura in 1938 - was wrong. Examination of the data enabled a minimum to be predicted for 1984 December 17 and this was successfully confirmed, at the expected time and with the expected duration. (Subsequent eclipses have now been observed, agreeing with the new elements.)

The object's classification as a Beta Lyrae variable remains correct, as does the depth of primary and secondary minima (about 0.7 mag 0.2 mag respectively). Approximate elements are:

Min I = 2446052.63 + 0.93044 E

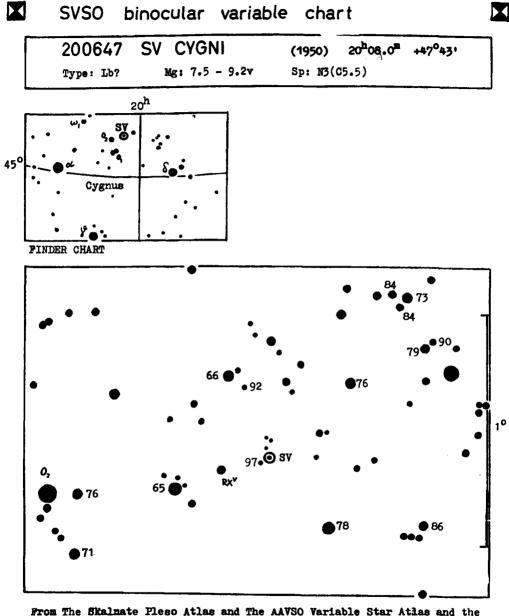
Additional observations are very desirable and observers are urged to make these. A chart is available from John Parkinson.

Possible additions to the Main Observing Programme

It has been appreciated for some time that there are few stars on the Main Programme between Right Ascensions 8 and 14 hours. It has therefore been decided to add a number of objects in this region. These will probably include:

SU Cnc (M, 12 - 15 pg); U CVn (M, 8.8 - 12.5 pg); RT CVn (M, 12.0 - 16.0 pg); R Com (M, 7.3 - 14.6 vis); RS Leo (M, 10.4 - 15.7 vis); RY Leo (SRb, 9.5 - 12.0 pg); U LMi (SRa, 10.0 - 13.3 vis); W LMi (SRd, 10.5 - 13.5 vis); X Lyn (M, 9.5 - 16 vis).

These stars will not formally become programme objects immediately, but we would like to commence observations as soon as possible. Observers interested in including any of these objects on their observational lists are asked to contact the Director immediately.


Scandinavian Binocular Variable Star Charts - John Parkinson

The Scandinavian Variable Star Observers (formerly the Scandinavian Union of Amateur Astronomers) has recently sent a set of their binocular variable star charts to the VSS. There are 38 charts covering 67 variables. They are provided with a key to the symbols used, together with a catalogue of the charts, listed in Right Ascension. (Given below.) A separate sheet gives the coordinates for epoch 2000 although the charts themselves are drawn using epoch 1950, as they were copied by permission from the Skalnate Pleso Atlas, the AAVSO Variable Star Atlas and, in the case of BU Tau, the BAA VSS chart. The sequences used are mainly from the AAVSO charts.

Having been drawn by one enthusiastic member, Veikko Mäkelä, they are uniform and look quite professional. In some instances a finder chart is included on the same sheet as the variable. All the relevant details are supplied: type, period, range, spectrum, and coordinates, along with the acknowledgements for the source material chart and sequence. In addition the limiting magnitude of the chart is given, useful for nova and supernova hunters. A table to calculate the effect of extinction is also supplied on some charts - obviously this is more of a problem to Scandinavian observers. The magnitude is printed next to the comparison. In a crowded part of the sky, such as Scutum, where the limiting magnitude is 9, the chart looks slightly cluttered as the size of type is rather large.

On the whole I feel that the Scandinavians can feel justly proud of their work. The only real problem lies in their preference for the AAVSO sequences. Whatever happened to EFVSO?

[A sample chart is reproduced opposite.]

From The Skalnate Pleso Atlas and The AAVSO Variable Star Atlas and the sequence from AAVSO by permissions of Sky Publishing Corporation and AAVSO. MH/AX 1977 VM 1983

The limiting magnitude of the finder chart: $\sim 6.0^m$ the sequence chart: $\sim 10.0^m$ SVSO Charts

1	003455	α	Cas	22	161559	AT	Dra
	005060	γ	Cas		163360	ТΧ	Dra
2	010884	RU	Cep		164657	AH	Dra
3	025838	ρ	Per		171560	VW	Dra
4	033362	U	Cam	23	171014	α	Her
5	033380	SS	Cep	24	184205	R	Sct
	071082	VΖ	Cam		184408	S	Sct
6	034323	BU	Tau		1857 <u>05</u>	v	Aql
7	040053	ΧХ	Cam	25	185135	δ²	Lyr
8	044930Ъ	AB	Aur		185243	R	Lyr
	050934	AE	Aur	26	192150	СН	Cyg
9	053920	Y	Tau		192745	AF	Cyg
10	054907	α	Ori	27	200536	V1624	Cyg
	060822	η	Gem		201036	V1644	Cyg
11	060426	ΤU	Gem		201437	Р	Cyg
	060521	ΤV	Gem		204334	Т	Cyg
	060523	WY	Gem	2১	200647	SV	Cyg
	060622	BU	Gem	29	200938	RS	Cyg
12	062938	UU	Aur	30	203317	EU	Del
	072046	Y	Lyn		204017	U	Del
13	084917	Х	Cnc	31	213244	W	Cyg
14	112245	ST	UMa		213845	V1339	Cyg
15	115158	Ζ	UMa	32	213753	RU	Cyg
16	121561	RY	UMa	33	213909	ε	Peg
17	124045	Y	CVn		225827	β	Peg
	125047	ΤU	CVn	34	213937	RV	Cyg
	131546	V	CVn	35	214058	μ	Cep
18	125266	RY	Dra		215363	VV	Сер
19	133674	v	UMi	36	214612	AG	Peg
20	153738	RR	CrB	37	225384	AR	Cep
	153739	SW	CrB	38	234956	ρ	Cas
21	155947	Х	Her				
	162542	g	Her				

Eclipsing Binary Programme - John Isles

The list of minima in this VSSC gives the results to the end of 1981. VSSC 60 will cover 1982-83 and future issues will report results as soon as possible after submission of observations.

These timings are only the first fruits of the harvest. The next step will be to go through the available data for each star, both the published timings and the original observers' reports, to see what further information can be gleaned by fitting together fragmentary observations, deriving revised elements for systems which have departed from prediction, and plotting mean light curves where these can yield further information. The results will be published in a series of reports in the *Journal*, and will provide material for notes in these Circulars on

eclipsing binaries of particular interest. The analysis will cover all available data for the years 1973 to 1984, so observers are urged to get their work for 1984 to me as quickly as possible to be sure it is included.

For some years now, most EBP results have been the work of just one observer. While Tristram is to be congratulated on his magnificent contribution, it is very unfortunate that we do not have any other active observers.

In theory, observers who have a good star atlas (the AAVSO Variable Star Atlas is the most useful) should be able to identify all the objects covered in the predictions, and can simply choose comparison stars at the telescope. The time at which the minimum occurred can be deduced from step estimates of the variable, without having to know the magnitudes of the comparison stars; see the *Journal*, 92, 76 1982 February (offprints available from me). But most observers would prefer co have charts for each variable, showing recommended comparison stars with their magnitudes. Accordingly, it has been decided that the range of available charts should be expanded.

Our Chart Secretary, John Parkinson, can already supply charts for the eclipsing binaries in the accompanying list. They include most of the objects on List A of the predictions, which can be observed with binoculars. We hope in the near future to make available to observers the charts issued by other groups active in this field, as well as a large number that have been drawn up by our own observers, particularly by Tristram Brelstaff, Melvyn Taylor, and Colin Henshaw, who is observing southern objects from Zimbabwe. Members who observe an object for which no chart has been issued can make a particularly valuable contribution by sending in, with their observations, a field sketch, which can be used by other observers.

Predictions are available from me for minima of most eclipsing binaries brighter than 10 m at maximum, observable from the British Isles. The computer programs have recently been transferred from the Royal Military College of Science to the RGO, where our predictions will be produced in future. See VSSC 55 for a description of the predictions and details of the stars covered. But observations of all eclipsing binaries are welcome, whether or not they are in the predictions.

Binocular Group members might like to experiment with WW Aur, AR Aur or TV Cas, which are shown on the BG charts for IS Gem, AE Aur and V377 / WZ Cas respectively. Predicted GMATs of forthcoming eclipses are given below.

WW Aur Primary and secondary eclipses last 6 hours.
1985 Jan 18d 11h, 19d 17h, 22d 6h, 23d 12h, 27d 7h, 28d 14h
Feb 1d 8h, 2d 15h, 6d 10h, 7d 16h, 11d 11h, 16d 12h, 20d 7h, 21d 13h, 25d 8h, 26d 14h
Mar 2d 9h, 7d 10h, 12d 12h, 17d 13h, 21d 8h, 22d 14h, 26d 9h, 31d 10h

 AR Aur
 Primary and secondary eclipses last 7 hours.

 1985 Jan 16d
 8h, 18d
 9h, 20d
 11h, 22d
 13h, 24d
 14h, 26d
 16h

 Feb
 14d
 6h, 16d
 8h, 18d
 10h, 20d
 11h, 22d
 13h, 24d
 14h

 Mar
 19d
 8h, 21d
 10h, 23d
 12h

 TV Cas
 Primary eclipses last 8 hours.
 1005
 15h
 15h
 25h
 15h
 15h
 15h
 15h

1985 Jan 15d 13h, 17d 9h, 25d 15h, 26d 10h, 28d 6h Feb 2d 16h, 4d 12h, 6d 8h, 11d 18h, 13d 14h, 15d 9h, 22d 15h, 24d 10h Mar 4d 16h, 5d 12h, 7d 8h, 14d 14h, 16d 9h, 24d 15h, 25d 11h

As the first stage in the introduction of additional sequence charts, 30 charts, not listed opposite, are now available from John Parkinson. Space precludes full details being given here, but a list will be published in VSSC 60. The stars are:

Andromeda- TW, WW, AB, AD, BX, CD, DSAquarius- ST, SUAquila- 00, V346Ara- RAries- RR, SSAuriga- SX, TT, AM, AR, BF, CQ, EO, HL, IU, IY, LYBoötes- SS, AC, ADCamelopardalis- SV, AN

UK Nova/Supernova Patrol - Guy Hurst

Members are asked to note that the telephone number given on the inside front cover is now available on an all-night basis for possible nova or supernova discoveries. However, please telephone routine matters through before 10 p.m. in the evening.

Although the primary aim of the patrol is to search for novae and supernovae, it is also important to obtain 'follow-up' results on recently reported objects and to investigate queries. A little while ago, Evans reported a supernova in NGC 7184 (IAUC 3962) and Tatum indicated that it was identical with a star on the Palomar Sky Survey (IAUC 3994). Using photographs obtained by our patrol member, Alan Young, and precise positions measured by P. Birtwhistle, we have established that the star and Evans' object are not identical but that the object is slowly fading. Furthermore, there is no definite candidate on the Palomar Sky Survey down to approximately magnitude 20. A report has been sent to the Central Bureau for Astronomical Telegrams in the U.S.A.

Observations of the two novae in Vulpecula to January 12 show that Nova Vul 1984 No.1 is about 9.9 and Nova Vul 1984 No.2 as around 6.6. Charts have been prepared for both and may be obtained from the Guy Hurst or the Chart Curator. Observations of these objects should be made every night.

[See also notes at bottom of page 12 and top of page 14.]

ECLIPSING BINARY CHARTS CURRENTLY AVAILABLE

STAR LIST	R.A. (1950) DEC. h m o ´	RANGÉ m m	MIN 11# TYPE M	PERIOD D* d h	WITH₩
V822 AQL C WW AUR A AR AUR A IM AUR A ZZ BOO A	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.7 - 7.1 5.7 - 6.4 6.1 - 6.8 7.9 - 8.5 7.2 - 7.9	7.1 EA 6.3 EA 6.7 EA EA 7.8 EA	5.30 ? 2.33 6 4.13 7 1.25 6 4.99 7	ae Aur
RS CVN B RZ CAS A TV CAS A U CEP A VW CEP A	13 08.3 +36 12 02 44.3 +69 26 00 16.6 +58 52 00 57.7 +81 36 20 38.1 +75 25	8.4 - 9.9 6.2 - 7.7 7.2 - 8.2 6.8 - 9.1 7.8 - 8.2	EA EA EA 8.1 EW	4.80 13 1.20 5 1.81 8 2.49 10 0.28 2	V377 CAS
EI CEP A GK CEP A NN CEP E Y CYG A V477 CYG B	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.7 - 8.2 6.9 - 7.4 8.2 - 8.7 7.3 - 7.9 8.5 - 9.3	8.1 EA 7.4 EB 8.6 EB 7.8 EA EA	8.44 12 0.94 6 2.06 12 3.00 7 2.35 4	VW CEP RW CEP
tw DRA A Ai DRA A Bh DRA A S Equ A Z HER A	15 33.1 +64 04 16 55.2 +52 47 19 02.8 +57 23 20 54.7 +04 53 17 55.9 +15 09	7.9 - 9.1 7.1 - 8.1 8.0 - 8.5 8.0 -10.1 7.3 - 8.1	EA EA EA EA EA	2.81 10 1.20 4 1.82 7 3.44 10 3.99 11	
RX HER A Nũ HER E u HER A AR LAC A V505 MON E	18 28.3 +12 35 18 09.4 +18 19 17 15.5 +33 09 22 06.6 +45 30 06 43.2 +02 33	7.3 - 7.9 8.0 - 8.6 4.6 - 5.3 6.1 - 6.8 7.2 - 7.7	7.8 EA EA? EB 5.4 EA ? EB	1.78 6 0.87? 3? 2.05 12 1.98 8 53.78?	V451 OPH IQ HER
u oph A V451 oph A V566 oph A Ee Peg A DM Per A	17 14.0 +01 16 18 26.9 +10 51 17 54.4 +04 59 21 37.6 +08 57 02 22.4 +55 53	5.9 - 6.6 7.9 - 8.5 7.5 - 8.0 5.9 - 7.6 7.7 - 8.5	6.5 EA 8.3 EA 7.9 EW EA EA	1.68 7 2.20 6 0.41 2 2.63 6 2.73 10	
IQ PER A IZ PER A BETA PER A SZ PSC A U SGE A	03 56.1 +48 01 01 28.9 +53 46 03 04.9 +40 46 23 10.8 +02 24 19 16.6 +19 31	7.7 - 8.3 7.8 - 9.0 2.1 - 3.4 8.0 - 3.7 6.6 - 9.2	5.3 EA 64 64 64 64	1.74 5 3.69 11 2.87 10 3.97 10 3.38 11	
rw tau B CD tru A Hu tau A W UMA A TX UMA A	04 00.8 +28 00 05 14.6 +20 05 04 35.3 +20 35 09 40.3 +56 10 10 42.4 +45 50	8.0 -11.5 7.3 - 7.9 5.9 - 6.7 7.9 - 8.6 7.1 - 8.8	EA 7.9 EA EA 8.5 EW EA	2.77 9 3.44 7 2.06 9 0.33 2 3.06 10	
Z VUL A	19 19.6 +25 29	7.4 - 9.2	ŁĤ	2.45 11	

* MIN II = depth of secondary minimum, if at least 0.3m D = length of eclipse in hours (or a guarter of the Period, for types SB, EW, WITH = other variable on whose chart the star appears

Some Medium Brightness Red Variables - Ian Middlemist

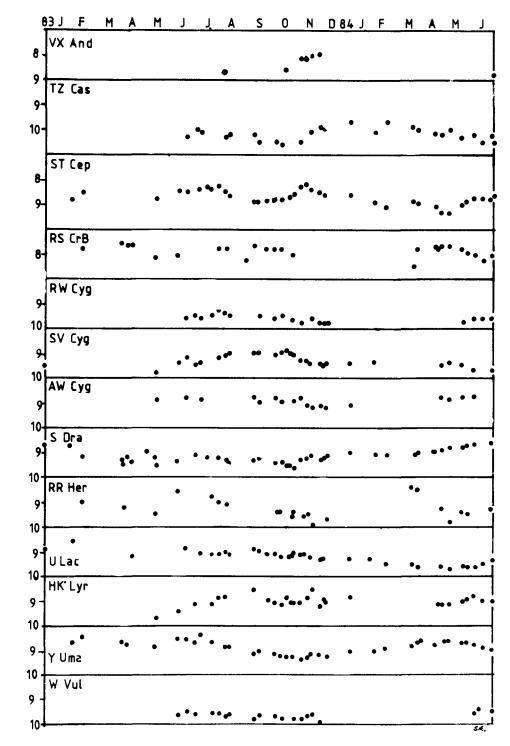
This is a summary of recent observations of a number of red (semiregular and related) variable stars, which are too faint for inclusion in the Binocular Group Programme, but are not studied by the BAA VSS Main Programme, AAVSO, or to my knowledge, any other major amateur group. The stars generally speaking are in the range of mag. 8.0 - 11.0, and so are suitable for observation with 6 to 10 cm object glasses. Together with objects in the same general range in the VSS programmes, they would make a good basis for the observing list of observers with such telescopes.

A short summary or comment is given for each star, and lightcurves of 13 are given on a separate page. The light-curves extend over a period of 18 months (1983 Jan to 1984 Jun). Earlier light-curves with comments were published in respect of a few of the stars in 'Light Curve' from 1976 to 1978.

VX And Only a few estimates, showing a rapid rise in 1983 Oct - Nov. Chart AAVSO Preliminary; Sequence BSS Preliminary.

<u>TZ Cas</u> Chart and sequence from visual estimates by IAM. Quite well-marked variations 9.7 - 10.5. At one time a candidate for inclusion in the VSS programme.

ST Cep Chart and sequence IAM, extension of BSS W & RW Cep. Good variations. Position is indicated on BG chart for W Cep. I have found this an interesting star over 8 years. Two previous reports in 'Light Curve'.


<u>RS CrB</u> Sequence IAM, chart JEI. No reliable estimates below 8.5 in 7 or 8 years. Observations do not support data in 3rd Edition of GCVS.

<u>RW Cyg</u> Chart and sequence Hagen ASV IV. Little in the way of certain fluctuation. 9.4 and 9.6 comparisons rather too close for ease of use. Another failed candidate for the VSS programme.

<u>SV Cyg</u> Chart and sequence Hagen ASV IV. Well-marked slow fluctuations, e.g. max. in Autumn 1983. This is a rewarding star for study.

<u>AW Cyg</u> Chart AAVSO AF Cyg 'b', sequence unknown source. Very shallow and uncertain fluctuation about mag. 9.0, belies the impressive photographic range.

<u>S Dra</u> Chart and sequence Hagen ASV IV. Over several years has varied slowly and steadily, with no resemblance to catalogue period. Reported previously in 'Light Curve'. When brighter than 8.9, this object can be observed in binoculars using the AH Dra sequence.

<u>RR Her</u> Chart and sequence Hagen ASV IV. Scattered observations tantalizingly suggest marked fluctuations, but may merely be erratic.

<u>U Lac</u> Chart and sequence Hagen ASV IV. Slow variations, reminiscent of S Per. A good star repaying observation over a long period. One report in 'Light Curve'.

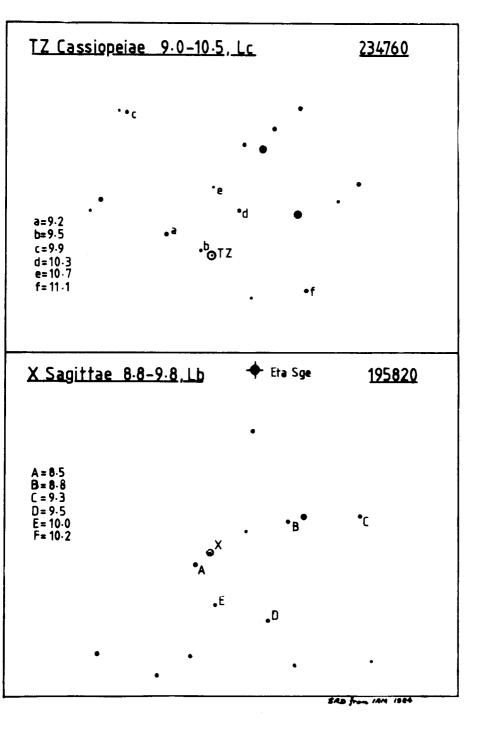
<u>HK Lyr</u> Chart and sequence IAM visual. Fluctuates quite noticeably about 9.0 in 3 - 4 months. Visual range probably smaller then photographic.

 $\frac{T}{9.6} = 9.7$ in 8 years.

 \underline{Y} UMa Chart and sequence Hagen ASV IV. See also BG chart for Z and RY UMa. Good, slow, well-marked variations make this star well worth observing. Reported in 'Light Curve'.

 $\frac{W Vul}{9.6 - 9.7}$ chart and sequence Hagen ASV IV. No notable deviation from 9.6 - 9.7 in 8 years.

In addition to the above, charts have been compiled for several other stars, which have, however, not been observed at all, or have only been observed a few times.


SS	And:	8.5	-	9.9,	SRc;	AN	Cep:	8.2	-	10.6,	SRa;
Ζ	Leo:	8.6	-	10.0,	SRb;	Х	Lyr:	8.6	_	9.8,	Lb;
ΚP	Lyr:	8.8	_	9.8,	SRb;	V438	Oph:	8.2	_	10.5,	SRa;
RT	Ori:	7.7	-	8.8	SRb;	V430	Ori:	8.3	_	9.8,	SRb;
SW	Per:	8.6	-	10.1,	SRb;	TT	Per:	8.2	-	9.7,	SRb;
ΤU	Tau:	9	-	10	SR;	Х	Sge:	8.8	-	9.8	Lb.

All these stars are, or should be, observable in small telescopes. Some of them may well prove to be interesting, whilst others will no doubt prove to be as disappointing as T Sge or W Vul.

Anyone wishing to observe any of the stars mentioned above can obtain charts from the writer, cost 10p each to cover photocopying. Observations should be reported in the format of the old-style VSS report forms, omitting Julian Date. I hope that it will be possible to provide a further summary and a progress report for publication in these circulars in a year or 18 months. Two specimen charts are reproduced opposite. [The charts have had to be redrawn for publication. Ian's address is: 26 Lockside, Marple, Stockport SK6 6BN - SRD]

Supernova/Nova Chart Catalogue

A chart catalogue is available, giving details of charts for the supernova search project, and information on existing objects, such as novae. Copies obtainable from Guy Hurst for 35p + SAE.

RZ Leo

Ducoty has recorded an object (confirmed by Scovil) that may be RZ Leo (Nova Leonis 1918) undergoing another outburst. Mag is about 13.0. A chart is available from Guy Hurst.

Minima of Eclipsing Binaries: 1979-81 - John Isles

The Section's visual timings of minima of eclipsing binaries in the years 1979 -81 are given in the accompanying table. Unless otherwise stated, O - C values are against the linear elements of the 1969 GCVS. For further explanation, see the last Circular (VSSC58). The only change is that doubtful timings are indicated by ? rather than * for obscure computing reasons which it would be wearisome to explain.

The observers were as follows:

AV = J. Agar	FB = R.B.I. Fraser
BS = T. Brelstaff	HO = A.J. Hollis
BZ = A. Bedford	IS = J.E. Isles
DT = D. Stott	TN = A. Thomson
EA = S.J. Evans	TY = M.D. Taylor
An asterisk draws attentio	n to a remark below.

Remarks

- V822 Aql The period in the 1969 GCVS is wrong (see BAAJ, 85, 447, 1975 Aug.), so the O - C is against the elements of the 1974 Supplement.
- RX Cas All the estimates in the calendar year have been folded onto a single cycle, and used to derive the times of the minima nearest the median date of the observations.
- V523 Cas Not listed in the 1969 GCVS. The 0 C is against the elements of the 1976 Supplement.
- NN Cep Elements not given in the GCVS or Supplements, so the O C is against those in IBVS 1881.
- XY Cet The period in the 1969 GCVS is wrong, so the 0 C is against the elements of the 1971 Supplement.
- V448 Cyg All the estimates in the calendar year have been folded onto a single cycle, and used to derive the times of the minima nearest the median date of the observations.
- HP Lyr The first minimum is derived from estimates 4812-4854 and 4927-4970; the second from estimates 4856-4925. Primary and secondary minima are of equal depth, and because of the large 0 - C it is not known which is which.
- β Lyr All estimates in each calendar year have been folded onto a single cycle, and used to derive times of minima nearest the median date of the observations. Observers in 1979 were BS and IS; in 1980 BS, IS and DT; in 1981 BS, BZ, IS and TN.
- V505 Mon Elements not given in the GCVS or Supplements. All the

estimates in each calendar year have been folded onto a single cycle, using the period of 53.7805d given in IBVS 1998 and confirmed by Stagni and Margoni, Astrophys. and Space Sci., 88, 115 (1982). those near an apparent minimum were used to derive timings. But as the elements are given in neither reference, the epoch and 0 - C are not given. Observers in 1980 were BS and FB, and in 1981 FB and TY.

IQ Per No period is given in the 1969 GCVS, so the 0 - C is against the elements of the 1974 Supplement.

SAO 77615 Not listed in the GCVS or Supplements. The O - C is against the elements given in IBVS 1942.

The numbers of estimates given against certain minima include estimates made on other nights which were also used in deriving the time of minimum. These were as follows:

Other Dates

No.

	And	4840	16	4816-4933
V822	Aql	4179	2	4110-4126
RS	CVn	4363	10	4349–4392
RO	Cas	4140	2	4131
ΕI	Cep	4137	7	4120-4196
NN	Cep	4158	14	4144-4187
U	CrB	4051	5	4120-4158
U	CrB	4348	4	4365
VW		4843	4	4876
V1143	Суд	4176	3	4046-4115
ΤW	Dra	4130	6	3785-4164
ΤW	Dra	4891	9	4874
WW	Dra	4168	18	4131-4196
S	Equ	4933	4	4940
Z	Her	4114	3	4046-4122
Z	Her	4130	1	4126
Z	Her	4146	2	4158
V450	Her	4869	11	4 847 -4932
U	Oph	41.67	5	4051
V451	Oph	4130	2	4132
V566	Oph	4166	3	4132
AW	Peg	4166	9	4187
ΕE	Peg	4168	12	4110-4152
ΙZ	Per	4179	5	4164
β	Per	4176	14	3875-4196
β	Per	4629	5	463 2
SZ	Psc	4166	2	4158
V505	Sgr	4899	2	4893
	Tau	3876	5	386 <u>9</u>
GR	Tau	4933	6	3970
HU	Tau	4197	4	3876-4164
RT	UMi	4813	52	4815-4933
Z	Vul	4749	4	4874
RS	Vul	4114	21	4123-4190

Date

Star

ST	R	EPOCH	HELIO JD 244	0 - C	No	OBSERVER	
AN F	U MP	יכל	4840.3957	-0.011?	20	B 8	*
WZ f	DHP	14224	4970.414	-0.024	10	B 8	
BX f	and	12043 12476 12520	3876.391? 4140.573 4167.431	-0.0057 -0.003 +0.009	9 6 9	88 89 88	
. DS (RND	8736	4970.314	+0.114	6	28	
00 (RGL.	21 545.5 21636	4844.439 4890.310	-0,060 -0,054	11 8	bs Bs	
1822	RGL.	2719,5	4179.247	-0.018	7	BS	#
SX I	AUR	15223	4166.493	+0.029	10	DS .	
vild f	AUR	4329 4339, 5 4436	3876.352 3900.340 4146.510	+0.005 +0.005 -0.014	9 8 6	BS Ty BS	
₿F 1	AUR	5950 .5 613 5	3876.341 4168.455	+0.008 +0.018	9 8	BS BS	
IM I	aur	4291 4309.5 4311 4628.5	4121.459 4144.574 4146.411 4542.407	-0.037 +0.003 -0.031 -0.053	7 12 10 5	BS BS Ho	
LV	AUR	1275.5	4166.616	-0.180	6	BS	
AM (Cam	23097	4166.422	+0.025	8	BS	
RS	CVN	3984	4363.584	-0.162	16	BS	*
RX (Cas	624 .5 625	4193.1 4207.8	+2.9 +1.5	12 10	BS B8	# #
RZ	Cas	5851 5857 5953 6005 6481	4137.385 4144.554 4259.295 4321.454 4890.389	+0.005 +0.002 -0.001 +0.006 +0.903	6 10 8 10 9	BS BS TY TY T Y	
TV	cas	132 68 13 274	4167.442 4178.315	-0.017 -0.019	7 10	BS BS	
TM	CAS	17043	4166.590	-0.010	9	BS	
ĐO	Cas	14918 14924 14927	4140.313 4144.410 4146.461	+0.009 -0.002 -0.005	8 12 12	BS BS BS	*
v523	Cas	15388.5 1 5508 15615	4816.460 4844.381 4869.387	+0.010 +0.006 +0.006	18 16 14	BS BS BS	岸岸
VW	CEP	38778	3956.481	-0.090	6	Τ¥	

S	TAR	EPOCH	HELIO JD 244	0 - C	No	OBSERVER	
VW	CEP	39403 39482 39533 39536 40746.5 40782.5 40818.5 40822 40843.5	4130,442 4152,425 4166,616? 4167,435 4504,336 4514,338 4524,391 4525,360 4531,335	-0.077 -0.082 -0.084? -0.101 -0.103 -0.120 -0.087 -0.092 -0.101	754545456	BS BS BS HU HO HO TY	
		40847 40897.5 42030 42062 42162 42162.5	4532.318 4546.338 4861.551 4870.481 4898.279 4898.446	-0.092 -0.127 -0.109 -0.085 -0.119 -0.092	56666	HŪ HŪ IS IS TY TY	
EI	CEP	867 892	4137.367 4348.395?	-0.029 +0.015?	13 5	B6 BS	岪
EK	CEP	1168	4174.405	+0.024	11	BS	
GK	CEP	6035 6036 6307.5 6324.5 7108.5	3875.457 3876.421 4130.557 4146.481 4880.408	-0.021 +0.007 -0.027 -0.018 -0.049	6 7 14 11 8	BS BS BS BS IS	
GΤ	CEP	3766	4114,508?	-0.117?	6	BS	
NN	CEP	-169.5	4158.534	+0.013	18	BS	∗
XY	CET	2083.5	4166.546	-0.017	9	BS	₩
U	CRB	7909 7995	4051.429 4348.308	-0.018 -0.028	Э 9	BS BS	*
Ŷ	CYG	11549.5 11551.5	4140 . 49 5 4146 . 469	+0.026 +0.008	9 11	BS BS	
VW	CYG	2908	4843.Ŭ95	+Ú.1ŨŨ	11	BS	₩
∀448	CYG	4267 4267.5	4180.68? 4184.14	-0.09? +0.10	16 16	BS BS	*
V477	CYG	5133	4893.350	-0.033	7	ΤY	
V836	CYG	26964.5	4166.386	-0 .0 34	8	BS	
V1143	CYG	2438 2444 2519 2542	4130.598 4176.425 4749.498 4925.259	+0.054 +0.036 +0.054 +0.078	11 6 9 8	BS BS BS BS	*
τw	DRA	3649 3666 3723 3920	4130.681 4178.402 4338.404 4891.354?	-0.040 -0.036 -0.025 -0.028?	13 12 7 14	BS BS BS BS	*

,

ST	AR	EPOCH H	ELIO	JD	244	0	- C	No	OBSERVER	
MM	Dra	3488 3640.5		68.5 74.3	521? 373		166? 007	25 6	BS BS	*
AI	Dra	4240 4245 4437 4567 4849	41 43 45	40.3 46.3 76.3 32.4 70.4	397 552 410	+0. +0. +0.	010 011 004 016 019	8 10 7 9 7	BS BS Ty Ho Is	
S	EQU	1798 1908 2027	45	46.4 24.3 33.2	369	-0.	016 002 030	10 9 9	BS Ho BS	*
YY	ERI	32812.5 32818.5		66. 68.			016 004	7 6	BS BS	
Z	HER	7771 7775 7779	41	14.4 30.3 46.3	379	+0.	012 001 026	9 7 10	BS BS BS	**
RX	HER	6183	41	67.3	306	~0.	005	7	BS	
тх	HER	7075	48	98.3	375	+0.	017	7	ΤY	
V 45 0	HER	21016	48	69.2	270	-0.	208	16	BS	₩
u	HER	18666	41	14.4	198	-0.	002	6	BS	
SW	LAC	20559 20559.5 20562 20565 20565.5 20565.5 20583.5	41 41 41 41	66.4 66.6 67.4 68.3 68.3	512 430 583 544	+0. +0. +0. +0.	041 030 046 037 038 039	5 6 7 13	BS BS BS BS BS BS	
AR	LAC	8699	38	76.3	385	+0.	011	8	BS	
CM	LRC	10703	42	01.3	331	+0.	001	8	BS	
AM	LEO	24010	43	76.5	516	-0.	038	7	Τ¥	
HP	LYR	127.5 128	48 48	17 93		-39 -33		24 27	BS BS	*
BETA	LYR	3524 3524.5 3550 3550.5 3580.5 3581	41 44 44 48	26.0 32.9 62.8 69.9 57.1 64.0	94 · 39 · 99 ·	+47. +47. +48. +48. +49.	68 46 11 07	39 36 95 90 35 30	2 2 2 3 4 4	****
V5 05	MON			09.5 90.9				5 9	2 2	*
U	ŪPH	21383 21395.5		46.3 67.2			003 008	6 9	BS BS	*
V451	0PH	4536.5	41	30.3	355	+0.	006	12	BS	*

.

31	TAR	SPOCH	HELIO JD 244	0 ~ C	No	OBSERVER	
V451	OPH	4719.5	4532.3 32	+0.006	5	HO	
V566	OPH	21777 22653.5 22668	4166.348 4525.351 4531.337	+0.052 +0.005 +0.05 1	7 4 11	TY HO BS	\$
AM	PEG	1659	4166.351	+0.078	24	BS	٠
B⊠	PEG	27165.5 27166 27 169 27258	4843.423 4843.574 4844.409 4869.375	-0.016 -0.005 -0.011 -0.003	11 10 11 12	BS BS BS BS	
DI	PEG	16472	4166.492	-0.016	9	BS	
FE	PEG	3632	4168.311	+0.057	19	BS	*
٩Y	PER	1513	4970.342	+0.036	5	BS	
ΙŬ	PER	2 247 2262 2 532	4140.405? 4166.563 4637.303	+0.012? +0.016 -0.007	8 9 11	BS BS BS	**
ΙU	PER	12771 12807 12919	4843.549 4874.405 4970.384	+0.074 +0.078 +0.071	22 15 8	es Bs Bs	
IZ	PER	5035.5 5042.5 5046 5231	4140.571 4166.398 4179.300 4861.520	-0.006 +0.008 +0.003 +0.005	10 9 10 12	BS BS BS IS	*
BETA	PER	1638 1766 1796 2060 2060	4176,316 4543,333 4629,358 4933,280 4933,306	-0.116 -0.125 -0.122 -0.142 -0.142	18 7 12 17 9	BS HO BS AV EA	*
SZ	PSC	2025 2030	4146.45 2 4166.374	-0.012 +0.078	10 10	BS BS	*
ŪΥ	PSC	18733 19547	4168.551 4869.447	+0.021 +0.026	11 14	BS BS	
Ũ	SGE	4438	4114.499?	-0.009?	10	BS	
EL	SGE	23122.5 23128.5 23167 23320	4839.537 4841.527 4854.358 4905.266	+0.059 +0.053 +0.070 +0.060	10 12 5 3	BS BS BS BS	
V505	SGR	9624	4899.261	-0.023	7	ΤY	*
CD	TAU	4973 4980 5047 5057.5	3876.294 3900.345 4130.547 4166.602	-0.060 -0.055 -0.008 -0.022	12 8 8 11	BS TV BS BS	*

El	S	TAR	EPOCH	HELIO	JD	244	٥	- <u>c</u>	No	OBSERVER	
	GR	TAU	39010 39204		41.5 33.5	i99 i83?		036 062?	7 9	BS BS	* *
	HU	tau	9009 9024 9044 9238 9347	41 42 46	55.4 97.3 38.4 37.3 51.3	826 63 64	+0. +0. +0.	032 017 028 007 023	10 6 8 11 8	BS BS TY BS IS	*
	×	TRI	7615	49	70.4	17	-0.	045	11	BS	
	ω	UMA	15477 16041 16106 16107 16736 16739 17518	41 41 41 43 43	56.4 44.6 66.3 66.6 76.4 77.4 37.3	09 28 31 77 78	-0. -0. -0. -0.	095 130 097 128 146 146 146	7 8 6 5 7 6 10	TY BS BS TS TY TY BS	
	M	UMI	6282 6295		44.4 66.5			020 047	12 14	BS BS	
	RT	UMI	9871	48	13.4	21	-0.	106	68	BS	*
	RU	UMI	35026	48	42.4	79	-0.	011	14	BS	
	2	VUL	7859	47	49.4	68	+0.	087	12	BS	₩
	RS	VUL	2525	41	14.3	864	+0.	007	27	BS	*
	SAO 77	7615	8125 8125.5 8189	41	44.4 44.6 66.3	571	+0.	040 040 060	6 7 6	BS BS BS	***

CHANGES OF ADDRESS

J.T. Bryan - 9606 Bluecreek Lane, Austin, Texas 78758-5804 United States of America

A. Moyle - 23 Broad Lane, Illogan, Redruth, Cornwall

STOP PRESS

.

HT Cassiopeiae - This eruptive object, which at one time was a possible candidate for inclusion on the BAA Main Programme has been seen at outburst by T. Kinnunen in Finland on 1985 Jan 13.70 at approximately 12.0 mag. (confirmed by Guy Hurst on Jan 13.80 at about 11.9). If anyone has the old preliminary BAA chart (or the AAVSO preliminary chart, derived from it), please attempt observations. Although this object has a catalogue period of 30 days, it has been rarely observed and Guy Hurst's preliminary check showed no observations since 1978. There were certain difficulties with this object and its field. Guy reports that the comparison that is nominally of magnitude 10.9 appears to be about a magnitude fainter. All other comparisons seem to be correct. It is possible that this comparison is itself variable and was the cause of some (or most) of the difficulties previously experienced.

A PLEA FROM THE SECRETARY

Will members submitting observations please include their full addresses. Many reports have been received without this information and in some cases it is difficult to identify the observers. If you have not received acknowledgement of your reports, this may be why! SECTION OFFICERS:

D.R.B. Saw, 'Upanova', 18 Dollicott, Director Haddenham, Aylesbury, Bucks. HP17 8JG Tel: Haddenham (0844) 292065 S.R. Dunlop, 140 Stocks Lane, East Wittering, Assistant Director nr Chichester, West Sussex PO20 8NT Tel: Bracklesham Bay (0243) 670354 Programme Secretaries: M.D. Taylor, 17 Cross Lane, Wakefield, Secretary West Yorkshire WF2 8DA Tel: Wakefield (0924) 374651 Assistant Secretary G.A.V. Coady, 15 Cedar Close, Market Deeping, Peterborough PE6 8BD Telescopic Tel: Market Deeping (0778) 345396 Assistant Secretary J. Toone, 2 Hilton Crescent, Boothstown, Binocular Worsley, Manchester M28 4FY Tel: 061 702 8619 J.E. Isles, Flat 5, 21 Bishops Bridge Road, Eclipsing Binary London W2 6BA Secretary Tel: 01 724 2803 G.M Hurst, 16 Westminster Close, Nova/Supernova Search Secretary Kempshott Rise, Basingstoke, Hants. RG22 4PP Tel: Basingstoke (0256) 471074 J. Parkinson, 229 Scar Lane, Golcar, Chart Secretary Huddersfield, West Yorkshire

CIRCULARS

Charges:	U.K. & Eire - £2 for Circulars and light-curves
(4 issues)	
	Other countries - £3

Payments (made out to the BAA) and material for inclusion should be sent to Storm Dunlop.

CHARTS

Charges: Main programme - SAE plus 20p per star (4 charts) All other programmes - SAE plus 5p per star (1 sheet)