

The British Astronomical Association

VARIABLE STAR SECTION

ISSN 0267-9272 Office: Burlington House, Piccadilly, London, W1V 9AG

VARIABLE STAR SECTION CIRCULAR 72

CONTENTS

Director's Change of Address	1
Appointment of Computer Secretary	1
Electronic mail addresses	1
VSS Centenary Meeting	1
Observing New Variables	2
Richard Fleet	
BAAVSS Computerization Dave McAdam	3
Unusual Carbon Stars John Isles	4
Symbiotic Stars - New Work for the VSS John Isles	4
Binocular and Telescopic Programmes 1991 John Isles	5
Analysis of Observations using Spearman's Rank Correlation Test Tony Markham	13
VSS Reports	16
AH Draconis: 1980-89 - Light Curves	17
R CrB in 1990 Melvyn Taylor	21
Minima of Eclipsing Binaries, 1988 John Isles	22
Index of Unpublished BAA Observations of Variable Stars, 1906-89	27
UV Aurigae	36
Pro-Am Liason Committee Newsletter No.3	Centre Pages

Director's Change of Address

Please note that John Isles has moved. His postal address remains the same, but his telephone/telefax number has altered. He can now also be contacted by telex. The new numbers are given inside the front cover.

Appointment of Computer Secretary

Following the announcement about computerization in VSSC 69, Dave McAdam has been appointed Computer Secretary of the VSS. Dave is already well known as the discoverer of Nova PQ And 1988, in which detection he was helped by his computerized index of his photographs of the sky. We are very pleased to welcome Dave to the team and look forward to re-introducing as soon as possible the publication of an annual booklet of computer-plotted light curves. Elsewhere in this Circular, Dave writes about the computer project, in which much help will be needed from members with suitable computers who can take part in the keying of observations.

Electronic Mail Addresses

Following the closure of Microlink, members are asked to note changes in the electronic mail addresses of the Section Officers as shown on the inside front cover. Telecom Gold is now the preferred system. Anyone considering subscribing to an electronic mail system is advised to discuss this with one of the Officers. This should certainly be done before submitting observations by this method.

BAA VSS Centenary Meeting 1991 October 19 and 20 Professional-Amateur Collaboration on Variable Stars

To commemorate its centenary, the Variable Star Section will be holding a meeting at The Manor House, Mayplace Road East, Crayford, Kent on 1991 October 19 & 20.

The meeting will consist of presented papers and poster displays together with an exhibition of equipment and trade stands. There will be ample opportunity for delegates to meet for discussion on an individual basis.

To celebrate the centenary of the Section a banquet will take place on the Saturday evening. The conference charge will be £25 all-in for 2 days, or £24 for one day. Both include lunch, morning and afternoon refreshments, and banquet. Charges excluding banquet are £10 for two days, and £7 for one. 'Bed and breakfast' accommodation can be arranged at an approximate cost from £12 per person per night.

Those wishing to participate are invited to complete the enclosed registration form and return it as soon as possible to:

R.D. Pickard, 28 Appletons, Hadlow, Kent TN11 0DT (Tel: 0732-850663) Full details of the venue and programme will be sent at a later date.

Observing New Variables

Richard Fleet (60 Blacklands Drive, Hayes End, Mddx UB4 8EX)

Although few observers make discoveries there is no reason why many others should not have the satisfaction of exploring the behaviour of an entirely new variable.

There are, of course, plenty of under-observed stars in existing programmes, but I feel there would be extra motivation if individual 'mini research projects' could be arranged. What I would like to see eventually is a situation where a suitably experienced observer could be allocated a new, suspected variable. It would then be up to the observer to confirm the identity of the variable, produce a chart and sequence if necessary, and observe it in detail until it is possible to give a useful description of the star's behaviour. A few might prefer to work alone, but I expect most experienced observers would ask others for confirming observations, or work in small groups.

The value of confirmation should not be underestimated, because it will be essential to be able to demonstrate the reliability of the observations and any conclusions drawn from them. Archive photographs will be valuable for showing past behaviour, but it may be worth persuading a few deep-sky photographers to record some of the fields, at various times, to provide a completely independent check. (Film and filter combinations would need to be standardized.)

Source Material

An obvious source of new objects are the anomalies turned up in automated searches; these may not be good news for potential discoverers, but could provide an unusual opportunity for others.

One possibility should be available in a few years' time when the second stage of the Hubble Space Telescope *Guide Star Catalog* is merged with the first, and is '... expected to reveal thousands of previously unknown variables of all types.' (*Sky & Telescope*, 1989 December, p.589). Most of them may not be suitable for amateur observation, but there should still be enough to go round, even after the professionals have taken their pick.

This is still several years away, but in the meantime there are plenty of objects that could be taken up. NSV objects are an obvious source, and Mike Collins has suggested a few others.

Co-ordination

While the main objective is to provide worthwhile individual projects, co-operation will be essential for success. Many observers will encounter similar problems so experience and expertise can be shared. Co-ordinating the allocation of objects will help to retain the personal-goal element, by avoiding duplication, and increase the number of stars covered. It may be useful to publish a list of which stars are being investigated by whom, as this would make it easier for outstanding observations and other information to be directed to whoever needs it. Working to common standards will be helpful, not only for the credibility of such an exercise, but also for the sharing or publication of the information gathered.

Worth Trying?

Results are likely to be highly variable, because it may be a matter of luck whether or not the stars involved are interesting - and the output from observers may range from nothing useful to excellent. Doing the job properly is likely to take years rather than months, so a long-term view is necessary. Those who make the effort would have the satisfaction of taking what was just an anomaly up to the point where it might be worthy of inclusion in the *GVCS*. Provided the results are of a high standard there should be no great problem getting them published in existing journals.

Not many amateurs seem to have tried this sort of work, yet there are many who can do it, and there is much that could be done. How about a few volunteers, each willing to take up a particular star?

T & Rite , Val, Rog & Tany

BAAVSS Computerization Dave McAdam

For some time now there has been a pressing need for the section records to be put onto an overall database system. Such a system is not easy to devise, because not only would it have to accept input in all the different ways that observers have reported observations to date, it would also need to be compatible with, or at least accept, the data which already exists in machine readable forms. There is also the possibility in the near future that it will have to contend with the growing number of PEP observations which some observers are now doing.

Output from such a database would also need to provide several options, such as chronological listings of estimates - either abbreviated or in full, or lists which are compatible with existing light curve plotting programs, and perhaps eventually providing output from its own internal plotting routines. There must also be the facility for re-reducing observations as sequences are revised and improved, and this could possibly be extended to include more sophisticated forms of analysis.

Although the complexities are somewhat daunting, I have agreed to have a go at devising an overall system and have begun work on writing the software as a computer "language" which will do the job of storing and accessing the data as required. Some helpful advice and suggestions on certain aspects have been forwarded by some section officers and members, and there will be other areas of section practice and know-how about which I will need to seek advice.

A basic concept for the system is that it will input pure ASCII text reports in similar layout to the current paper reports but with the addition of keyword headings which can be read and recognised. This means that computer reports can be typed by anyone with a word processing computer and saved on floppy disk or tape ready to send to a section officer. Here, "send" includes electronic mailing as well as letter/parcel post. Of course, sending reports on disk or tape is not as straight forward as it may sound due to the diversity of home computer storage formats. However, it may be that this problem can be partly overcome so that a few of the more popular formats are acceptable. A first priority is to tackle the massive job of typing existing paper records into computer files: if any members with word processing facilities think they can help with this work, I would be very pleased to hear from them. For anyone with a BBC computer, utility programs are available for entering reports without a word processor. A leaflet describing the computer report formats is available in exchange for an SAE.

Unusual Carbon Stars

Participating observers have already been notified that the collaborative programme on four unusual carbon stars, together with astronomers at University College, London, (UCL) was completed in 1990 September. All results reported to the Director have been forwarded to UCL for inclusion in the final report of the programme. The observed amplitudes of the four stars concerned (VX And, EU And, V778 Cyg, BM Gem) were small and it has been decided that they should not be included in the main programme of the VSS.

The work by visual observers included the experimental use of colour filters for observing these very red stars, and the results are likely to be of interest in planning future studies of strongly coloured stars. We therefore plan to publish an analysis of the data in a future VSS *Circular*. Any outstanding observations (with or without filters) of these four stars should be sent to the Director immediately.

Symbiotic Stars - New Work for the VSS John Isles

Recent VSS Circulars have proposed the addition of several symbiotic stars to our programme, and two such objects - UV Aur and AX Per - were introduced to members in VSSC 70. Shortly afterwards I received from Dr L. Hric and Dr A. Skopal an invitation for both photoelectric and visual observers in the VSS to participate in an international campaign of long-term photometry of symbiotic stars. Their call for observations is published in the accompanying PALC Newsletter.

Accordingly, charts have been drawn up for all the known northern and equatorial symbiotic stars not already on our programme that are suitable for observation, and visual observers may order these charts from John Toone. The full list of symbiotic stars now on the VSS programme is as follows.

Z And	CI Cyg	SS Lep	AS 245 Sgr
EG And	V1016 Cyg	BX Mon	FR Sct
R Aqr	V1329 Cyg	RS Oph	FG Ser
UV Aur	AG Dra	Hen 1341 Oph	AS 289 Ser
TX CVn	NQ Gem	AG Peg	PU Vul
T CrB	YY Her	AX Per	
BF Cyg	V443 Her	HM Sge	
CH Cyg	RW Hya	QW Sge	

The three stars without variable-star names are not so far known to vary, but are very much worth checking for change. Details of ranges, types and available charts are given in the full list of stars on the binocular and telescopic programmes, given elsewhere in this VSSC. The symbiotic stars include eruptive variables of Z Andromedae type, recurrent novae, very slow novae, Mira stars or semiregular variables, and eclipsing binaries. Often a given star shows more than one type of variation.

Observers of CH Cyg and AG Peg are particularly asked to note that the charts for these stars have been redrawn with revised comparison star sequences linked to photoelectric V measures.

The list of stars includes all those proposed by Drs Hric and Skopal, except V471 Per (the 13 mag central star of the planetary nebula M1-2), Draco C-1 (a 17 mag star in the dwarf spheroidal galaxy Draco C) and V407 Cyg (of mag 15). These three objects are not suitable for study in small telescopes but observations from members with appropriate equipment would still be welcome. Five symbiotic stars readily observed in small instruments have been added to the original list: NQ Gem (a former binocular programme star), SS Lep, Hen 1341 Oph, AS 245 Sgr and FR Sct. Anyone who refers to the original list in IBVS 3364 should also note that V741 Per should read V471 Per, AS 296 has been identified with the variable star FG Ser, and AS 360 has been named QW Sge.

The first results of the campaign, including the available visual data for the years 1988 and 1989, will be published shortly. Many of the stars new to our programme have not been well observed hitherto, and I hope observers will pay special attention to them. Most of these stars should be observed once or twice a week, but the recurrent novae need nightly checking. Unusual activity, particularly a sudden rise, should be reported to a member of the alert team whose telephone numbers are given inside the front cover. In future VSS Circulars we plan to summarize the observational history of each of these fascinating objects.

Binocular and Telescopic Programmes 1991

John Isles

The accompanying list gives details of all objects currently on the binocular and telescopic programmes, and the charts available for them. It does not include objects on the separate programme of recurrent objects (see VSSC 69), eclipsing binaries (see the Eclipsing Binary Handbook), or supernova search charts (see VSSC 67).

The positions, types, ranges and periods are mostly from the GCVS, but account has also been taken of some data appearing since that catalogue was compiled. For many red variables, visual ranges have been taken from other sources. A key to the abbreviations under "Type" is given at the end of the list.

The column "Pr" indicates whether each star is on the binocular (B) or telescopic (T) programme. The separation into two programmes is a matter of administrative convenience, and affects observers only in that the charges for binocular and telescopic charts differ (see inside back cover). Several objects on the telescopic

programme are normally bright enough for observation with binoculars or the naked eye; these are marked "T*". Conversely, several objects on the binocular programme are often too faint for binoculars, and may be suitable for small telescopes; these are marked "B*".

The final column usually gives: the serial number appearing at the foot of the chart (or at the head on newer charts); the date of the latest revision; or the name of another variable on whose chart the star in question appears. Observers are urged to check their charts to make sure they are using the latest versions, and where necessary to obtain replacements from the Chart Secretary.

Binocular Priority List. Binocular observers are asked to note that stars in the following list (slightly expanded from that given in VSSC 70) have priority status because of their importance. When possible, they should be observed once every ten days, or every five days if they appear to be changing rapidly.

The remaining stars on the binocular programme can be observed less frequently, for example once a month. The priority stars are:

AQ And	Mu Cep	RX Lep
EG And	Omicron Cet	SS Lep
V Aql	R CrB	Y Lyn
UU Aur	W Cyg	SV Lyn
AB Aur	AF Cyg	U Mon
V Boo	CH Cyg	X Oph
RW Boo	U Del	BQ Ori
RX Boo	EU Del	AG Peg
U Cam	RY Dra	GO Peg
ST Cam	TX Dra	X Per
XX Cam	AH Dra	R Sct
X Cnc	NQ Gem	Y Tau
RS Cnc	X Her	W Tri
V CVn	SX Her	Z UMa
WZ Cas	UW Her	ST UMa
V465 Cas	AC Her	VY UMa
Gamma Cas	IQ Her	V UMi
Rho Cas	OP Her	SS Vir
W Cep	R Hya	SW Vir
AR Cep	RW Hya	

Alert Reports. Unusual activity in any star on the binocular or telescopic programme should be reported to any member of the alert team of "The Astronomer", whose telephone numbers are listed inside the front cover of each VSSC. The following should be watched for in particular:

- major outbursts or subsidiary rises in the recurrent novae, old novae (especially GK Per), long-period dwarf novae (VY Aqr, UV Per, WZ Sge, SW UMa), and Z And stars.
- supermaxima of UGSU stars.
- fades of RCB stars to 0.5m or more below normal maximum brightness.
- any sudden fade of PU Vul below its current brightness of 11m.

Early detection and reporting will enable important observations to be made by amateurs and professionals world-wide.

Star	R.A. (19.	50) Dec	Type	Range	Period	Pr	Chart
R And	00 21.4	+38 18	М	5.6 - 14.9V	409	Т	053.01
W And	02 14.4	+44 04	••• M	6.7 - 14.6V	7 396	Т	035.01
Z And	23 31.3	+48 33	ZAND	8.0 - 12.4P	I Contraction of the second	Т	095.01
RS And	23 52.8	+48 22	SRA	7.0 - 9.1 V	/ 136	B*	TZ And
RW And	00 44.6	+32 25	М	7.9 - 15.7V	430	Т	022.01
RX And	01 01.8	+41 02	UGZ	10.3 - 14.0V	/ 14	Т	001.02
SU And	00 02.0	+43 16	LC	8.0 - 8.5V	,	B*	TZ And
TZ And	23 48.4	+47 14	SRB	7.6 - 9.0V	,	B*	1977 Sep 10
AQ And	00 24.9	+35 19	SR	8.0 - 8.9V	7	B*	1982 Aug 16
BZ And	00 34.9	+45 20	LB	7.5 - 8.4V	7	B*	1982 Aug 16
EG And	00 41.9	+40 24	ZAND	7.1 - 7.8V		В	072.01
R Aqr	23 41.2	-15 34	М	5.8 - 12.4V	7 387	Т	096.01
VY Aqr	21 09.5	-09 02	UGSU	8.4 - 17.2P		Т	1987 Oct 25
R Aql	19 04.0	+08 09	М	5.5 - 12.0V		Т	030.01
V Aql	19 01.7	-05 46	SRB	6.6 - 8.4V	353	B	026.02
UU Aql	19.54.6	-09 27	UGSS	11.0 - 16.8P		Т	002.02
UW Aql	18 55.0	+00 23	LC	8.9 - 9.5V		Т	028.01
V450 Aqi	19 31.3	+05 21	SRB	6.3 - 6.7V	64	B	070.01
V603 Aql	18 46.4	+00 32	NA/E+X	-1.1 - 12.0V	•	Т	1986 Oct 24
V1293 Aql	19 30.6	+04 55	SRB	6.7 - 7.4V	,	В	V450 Aql
V1294 Aql	19 31.1	+03 39	GCAS	6.8 - 7.2V		B	V450 Aql
V Ari	02 12.3	+12 00	SRB	7.8 - 8.8V		B*	1984 Oct 26
SS Aur	06 09.6	+47 45	UGSS	10.3 - 15.8V		Т	003.02
UU Aur	06 33.1	+38 29	SRB	5.1 - 6.8V	234	В	1984 Apr 9
UV Aur	05 18.5	+32 28	М	7.4 - 10.6V	394	Т	074.01
AB Aur	04 52.6	+30 28	INA	6.9 - 8.4B		В	TT Tau
Psi ¹ Aur	06 21.1	+49 19	LC	4.8 - 5.7V		В	1973 Jul 14
U Boo	14 52.0	+17 54	SRB	9.8 - 13.0V		Т	036.01
V Boo	14 27.7	+39 05	SRA	7.0 - 12.0V		Т	037.01
W Boo	14 41.2	+26 44	SRB?	4.7 - 5.4V	450?	B	undated

Binocular and Telescopic Programme Stars 1991

Star	R.A. (19	50) Dec	Type	Range	Period	Pr	Chart
RV Boo RW Boo RX Boo U Cam V Cam	14 37.1 14 39.1 14 21.9 03 37.5 05 56.0	+32 45 +31 47 +25 56 +62 29 +74 30	SRB SRB SRB SRB M	6.3 - 8.0V 6.4 - 7.9V 6.9 - 9.1V 7.7 - 8.7V 7.7 - 16.0V	137 209 160 522	B B B * B	1974 Jan 20 RV Boo 1972 Aug 12 1972 Nov 4 027.01
X Cam Z Cam RY Cam ST Cam UV Cam XX Cam ZZ Cam X Cnc RS Cnc RT Cnc	04 39.2 09 19.7 04 26.1 04 46.0 04 01.5 04 04.8 04 13.3 08 52.6 09 07.6 08 55.6	+75 01 +73 16 +64 20 +68 05 +61 40 +53 14 +62 13 +17 25 +31 10 +11 02	M UGZ SRB SRB SRB RCB? LB SRB SRC? SRB	7.4 - 14.2V 10.0 - 14.5V 7.3 - 9.4V 6 - 8 V 7.5 - 8.1V 7.3 - 9.7V 7.1 - 7.9V 5.6 - 7.5V 5.1 - 7.0V 7.1 - 8.6V	144 22 136 3007 2947 1957 1207 607	T B* B T* B B B B B*	038.01 004.02 UV Carn 1976 Jun 2 1972 Jul 29 068.01 UV Carn 1984 Apr 8 1984 Apr 12 1972 Jul 29
SU Cnc U CVn V CVn Y CVn RT CVn TU CVn	08 55.0 08 10.7 12 44.9 13 17.3 12 42.8 13 46.5 12 52.7	+13 57 +38 39 +45 47 +45 43 +33 56 +47 28	M M SRA SRB M SRB	12.0 - [16 P 7.0 - [13 V 6.5 - 8.6V 5.2 - 6.6V 10.0 - 14 V 5.6 - 6.6V	187 346 192 157 254 50	Т Т В* В Т В	1973 Mar 1983 Mar Y CVn 1984 Apr 12 1971 May Y CVn
TX CVn W CMa S Cas T Cas	12 32.7 12 42.3 07 05.7 01 16.0 00 20.5	+47 28 +37 02 -11 51 +72 21 +55 31	ZAND LB M M	9.2 - 11.8P 6.4 - 7.9V 7.9 - 16.1V 6.9 - 13.0V	612 445	B B T T	078.01 1982 Nov 7 054.01 067.01
UV Cas WZ Cas V391 Cas V393 Cas V465 Cas	23 00.2 23 58.7 01 52.5 01 58.5 01 15.1	+59 20 +60 05 +69 58 +71 03 +57 32	RCB SRB LB SRA SRB	10.5 - 15.2V 6.9 - 8.5V 7.6 - 8.4V 7.0 - 8.0V 6.2 - 7.2V	186 393 60	T B* B B B	061.01 1982 Aug 16 1978 May 15 V391 Cas 1983 Oct 1
Gamma Cas Rho Cas W Cep RU Cep RW Cep	00 53.7 23 51.9 22 34.6 01 14.4 22 21.2	+60 27 +57 13 +58 10 +84 52 +55 43	GCAS SRD SRC SRD SRD	1.6 - 3.0V 4.1 - 6.2V 7.0 - 9.2V 8.2 - 9.8V 6.2 - 7.6V	320 109 346?	T* T* B* B* B	064.01 Gam Cas RW Cep RX Cep 1983 Oct 1
RX Cep SS Cep AR Cep DM Cep FZ Cep	00 45.9 03 41.6 22 52.6 22 07.4 21 18.2	+81 42 +80 10 +84 47 +72 31 +55 14	SRD? SRB SRB LB SR	7.2 - 8.2V 6.7 - 7.8V 7.0 - 7.9V 6.9 - 8.6V 7.0 - 7.6V	55? 90	B B B B	1985 May 6 1972 Nov 4 RX Cep undated 1983 Oct 1
Mu Cep Omicron Cet R Com R CrB S CrB	21 42.0 02 16.8 12 01.7 15 46.5 15 19.4	+58 33 -03 12 +19 04 +28 18 +31 33	SRC M M RCB M	3.4 - 5.1V 2.0 - 10.1V 7.1 - 14.6V 5.7 - 14.8V 5.8 - 14.1V	730 332 363 360	B T* T T* T	1973 Jul 14 039.01 1946 041.01 043.01

_	20010			-		_	-
Star	R .A. (19:	50) Dec	Туре	Range	Period	Pr	Chart
T CrB	15 57.4	+26 04	NR	2.0 - 10.8	V 29000	Т	025.01
V CrB	15 47.7	+39 43	M	6.9 - 12.6	V 358	Т	057.01
W CrB	16 13.6	+37 55	M	7.8 - 14.3		Ť	044.01
RR CrB	15 39.6	+38 43	SRB	7.1 - 8.6		B	SW CrB
SW CrB	15 38.9	+38 53	SRB	7.8 - 8.5		B	1984 Jan 4
						T ·	
R Cyg	19 35.5	+50 05	M	6.1 - 14.4			031 01
S Cyg	20 04.4	+57 50	M	9.3 - 16.0		Т	032.01
V Cyg	20 39.7	+47 58	M	7.7 - 13.9		T	034.01
W Cyg	21 34.1	+45 09	SRB	5.0 - 7.6		T*	062.01
RU Cyg	21 39.0	+54 06	SRA	8.0 - 9.4	V 233	B*	FZ Cep
RV Cyg	21 41.2	+37 47	SRB	7.1 - 9.3		B*	V460 Cyg
SS Cyg	21 40.7	+43 21	UGSS	7.7 - 12.4		Т	005.02
TT Cyg	19 39.0	+32 30	SRB	7.4 - 8.7		B*	1972 Sep 16
AF Cyg	19 28.7	+46 02	SRB	6.4 - 8.4	V 92	B	1983 Oct 2
BC Cyg	20 19.8	+37 22	SRC	9.6 - 10.5	v 700?	Т	BI Cyg
BF Cyg	19 21.9	+29 35	ZAND	9.3 - 13.4	P	Т	088.01
BI Cyg	20 19.5	+36 46	LC	8.4 - 9.9	V	Т	065.01
CH Cyg	19 23.2	+50 08	ZAND+S	R 5.6 - 8.5	V ·	B	089.01
CI Cyg	19 48.4	+35 33	EA/G+ZA	ND 9.1 - 11.5	V 855		06.01
V460 Cyg	21 39.9	+35 17	SRB	5.6 - 7.0	V 180?	B	1983 Sep 18
V482 Cyg	19 57.8	+33 50	RCB	11 - [15	v	т	JBAA 88 Apr
V973 Cyg	19 43.1	+40 36	SRB	6.2 - 7.0		B	AF Cyg
V1016 Cyg	19 55.3	+39 42	NC+M	10.1 - 17.5		Ť	092.01
V1329 Cyg	20 49.0	+35 24	E+NC		B 950	Ť	093.01
V1819 Cyg	19 52.8	+35 34	N	8.7 - 19	-	T	1987 Oct 3
Chi Cyg	19 48.6	+32 47	м	3.3 - 14.2		Т	045.01
P Cyg	20 16.0	+37 53	SDOR		V 400 V	B	1972 Jul 29
UDel	20 10.0	+17 54	SRB	5.6 - 7.5		B	EU Del
EU Del	20 35.6	+18 06	SRB	5.8 - 6.9		B	1983 Oct 1
HR Del	20 35.0	+18 59	NB	3.5 - 12.0		Ť	1983 Oct 1 1972 Nov
T Dra	17 55.6	+58 13	M	7.2 - 13.5		T	046.01
RY Dra	12 54.5	+66 16	SRB?	6.0 - 8.0		B	Y UMa
TX Dra	16 34.3	+60 34	SRB	6.8 - 8.3		B	AT Dra
UW Dra	17 56.5	+54 40	LB	7.0 - 8.2		B	1974 Jul 27
UX Dra	19 23.4	+76 28	SRA?	5.9 - 7.1		B	1982 Nov 7
VW Dra	17 15.9	+60 43	SRD?	6.0 - 7.0		B	AT Dra
AB Dra	19 51.1	+77 37	UGZ	11.0 - 15.3		Т	007.03
AG Dra	16 01.4	+66 56	ZAND	8.9 - 11.81		T	080.01
AH Dra	16 47.4	+57 54	SRB	7.1 - 7.9		B	AT Dra
AT Dra	16 16.4	+59 52	LB	5.3 - 6.01	V	B	1972 Jan 25
U Gem	07 52.1	+22 08	UGSS+E	8.2 - 14.9		т	008.02
TU Gem	06 07.8	+26 02	SRB	7.4 - 8.31		B *	1972 Nov 11
TV Gem	06 08.8	+21 53	SRC	6.6 - 8.0	V	B	TU Gem
WY Gem	06 08.9	+23 13	LC+E?	7.2 - 7.9	7	. B	TU Gem
BN Gem	07 34.2	+17 01	GCAS	6.8 - 6.91	7	B	1972 Jul 29

-

.

-

Star	R.A. (195	50) Dec	Туре	Range	Period	Pr	Chart
BQ Gem BU Gem DW Gem	07 10.5 06 09.3 06 27.8	+16 15 +22 55 +27 29	SRB LC LB	5.1 - 5.5V 5.7 - 8.1V 8 - 10 V	7	B B B*	1972 Sep 16 TU Gem 1985 Mar 18
IR Gem IS Gem	06 44.5 06 46.4	+28 08 +32 40	UGSU SRC	10.7 - [14.5V 5.3 - 6.0V		T B	042.01 1972 Jun 10
NQ Gem X Her RU Her SS Her	07 28.9 16 01.2 16 08.2 16 30.5	+24 37 +47 23 +25 12 +06 58	SR+ZAND SRB M M SRB	6.3 - 7.4V 6.8 - 14.3V 8.5 - 13.5V	95 485 107	B* B T T B*	077.01 1982 Feb 7 060.01 047.01
ST Her SX Her UW Her YY Her AC Her AH Her	15 49.3 16 05.3 17 12.6 18 12.4 18 12.4 16 42.1	+48 38 +25 02 +36 25 +20 58 +21 50 +25 21	SRB SRB ZAND RVA UGZ	7.0 - 8.7V 8.0 - 9.2V 7.8 - 8.7V 11.1 - [14.0B 6.8 - 9.0V 10.9 - 14.7P	103 104 75	B* B* T T* T	1971 May 1 VSSC 65 p.9 1973 Aug 30 084.01 048.02 009.03
IQ Her OP Her V443 Her V566 Her g Her	18 15.7 17 55.4 18 20.1 18 06.3 16 27.0	+17 58 +45 21 +23 25 +41 43 +41 59	SRB SRB ZAND SRB SRB	7.0 - 7.5V 5.9 - 6.7V 11.4 - 11.7V 7.1 - 7.8V 4.3 - 6.3V	75 120 137	B B T B B	AC Her 1984 Apr 12 086.01 OP Her X Her
R Hya U Hya RW Hya SU Lac SX Lac	13 27.0 10 35.1 13 31.5 22 21.0 22 53.6	-23 01 -13 07 -25 07 +55 16 +34 56	M SRB ZAND M SRD	3.5 - 10.9V 4.3 - 6.5V 8 - 9 V 11 - 15 V 7.7 - 8.7V	450? 370 302	T* B T* T B*	049.01 1982 Nov 14 079.01 069.01 1974 Jul 28
X Leo RS Leo RY Leo U LMi W LMi	09 48.4 09 40.6 10 01.6 09 51.6 10 41.9	+12 07 +20 05 +14 14 +36 20 +26 18	UGSS M SRB SRA SRA SRD	11.1 - 15.7V 10.7 - 16.0P 9.0 - 11.8V 10.0 - 13.3V 10.5 - 13.5V	208 115 272	T T T T	010.01 1971 Mar 1942 Feb 17 1942 1976 Apr
RX Lep SS Lep W Lyn X Lyn Y Lyn	05 09.0 06 02.8 08 13.4 08 22.3 07 24.6	-11 55 -16 29 +40 17 +35 34 +46 06	SRB ZAND M M SRC	5.0 - 7.4V 4.8 - 5.1V 7.5 - 14.0V 9.5 - 16 V 6.9 - 8.0V	295 321	B T T B	1972 Sep 16 075.01 1971 Jul 1982 FeB 1978 Jul 14
SV Lyn R Lyr XY Lyr AY Lyr U Mon	08 00.4 18 53.8 18 36.4 18 42.7 07 28.4	+36 29 +43 53 +39 37 +37 57 -09 40	SRB SRB LC UGSU RVB	6.6 - 7.5V 3.9 - 5.0V 5.8 - 6.4V 2.5 - 18.4B 5.9 - 7.8V	46? 24	B B T T*	1981 Jun 18 1972 Nov 11 1972 Sep 16 011.01 029.02
RV Mon SX Mon BX Mon X Oph RS Oph	06 55.7 06 49.3 07 22.9 18 36.0 17 47.5	+06 14 +04 50 -03 30 +08 47 -06 42	SRB SR * M NR	6.8 - 8.3V 7.3 - 8.5V 9.5 - 13.4P 5.9 - 9.2V 4.3 - 12.5V	328	B B* T B* T	SX Mon 1987 Dec 30 076.01 1972 Nov 4 024.01

.

•

-

-

Star	R.A. (19	50) Dec	Туре	Range	Period	Pr	Chart
V2048 Oph Hen 1341 Oph U Ori W Ori BL Ori	17 57.8 17 05.7 05 52.8 05 02.8 06 22.6	+04 22 -17 23 +20 10 +01 07 +14 45	GCAS+U ZAND? M SRB LB		/ / 368 / 212	B T T B B	1978 Jul 14 081.01 059.01 1972 Nov 4 1983 Oct 3
BQ Ori CK Ori CN Ori CZ Ori RU Peg AG Peg GO Peg S Per	05 54.1 05 27.7 05 49.7 06 13.9 22 11.6 21 48.6 22 52.6 02 19.2	+22 50 +04 10 -05 26 +15 25 +12 27 +12 24 +19 18 +58 22	SR SR? UGZ UGSS UGSS+Z NC LB SRC	6.9 - 8.9 5.9 - 7.1 11.0 - 162 11.2 - 15.6 27 9.0 - 13.2 6.0 - 9.4 7.1 - 7.8 7.9 - 12.0	/ 1207 / 16 / 26 / 74	8* B T T B* B T	Y Tau 1972 Aug 12 012.02 013.02 014.02 094.01 1971 Jul 28 050.01
X Per RS Per SU Per	03 52.2 02 18.8 02 18.6	+30 54 +56 53 +56 23	GCAS+ SRC SRC UGZ	CP 6.0 - 7.0 7.8 - 10.0 7.0 - 8.5	7 244 7 533	B T B T	1984 Apr 8 BU Per AD Per 015.02
TZ Per UV Per AD Per AX Per	02 10.3 02 06.7 02 17.0 01 33.1	+58 09 +56 57 +56 46 +54 00	UGSU SRC ZAND	11.0 - 17.5 7.7 - 8.4 8 - 13	7 320 7 362 7 682	Т В* Т	016.03 1974 Jan 13 073.01
BU Per GK Per KK Per PR Per Z Pac	02 15.4 03 27.8 02 06.8 02 18.1 01 13.4	+57 12 +43 44 +56 19 +57 38 +25 30	SRC NA+XP LC LC SRB	9.0 - 10.0 0.2 - 14.0 6.6 - 7.9 7.6 - 8.3 7.0 - 7.9		T B B* B	063.01 1977 Aug AD Per AD Per 1969 Nov 10
TV Pic TX Pic SV Sge WZ Sge HM Sge	00 25.4 23 43.8 19 06.0 20 05.3 19 39.7	+17 37 +03 13 +17 33 +17 33 +16 38	SR LB RCB UGSU+E4 NC+M	4.7 - 5.4 4.8 - 5.2 10 - 15 2Z 7.0 - 15.0P 10 - 17 10 - 17		B B T T T	1972 Sep 9 1972 May 27 071.01 023.01 090.01
QW Sge AS 245 Sgr N Sco 1989 R Sct S Sct	19 43.6 17 49.0 17 48.6 18 44.8 18 47.6	+18 29 -22 19 -32 31 -05 46 -07 58	ZAND ZAND? N RVA SRB	11 - 12 V 11 - 12 V 9.4 - V 4.2 - 8.6V 7.0 - 8.0V	146	T T T T B	091.01 082.01 N014.01 V Aql V Aql
FR Sct V443 Sct R Ser FG Ser AS 289 Ser	18 20.6 18 47.0 15 48.4 18 12.6 18 09.6	-12 42 -06 15 +15 17 -00 20 -11 41	ZAND N M ZAND ZAND?	10 - 12 V 8.5 - [21 V 5.2 - 14.4V 9 - 13 V 12.8 - V	356	T T T T	087.01 N013.01 033.01 085.01 083.01
Y Tau RV Tau SU Tau TT Tau BU Tau	05 42.7 04 44.0 05 46.1 04 44.8 03 46.2	+20 41 +26 05 +19 03 +28.27 +23 59	SRB RVB RCB SRB GCAS	6.5 - 9.2V 8.8 - 11 V 9.1 - 16.9V 8.1 - 8.8V 4.8 - 5.5V	77	B* T T B* B	1984 Apr 12 056.01 017.02 1983 Oct 1 1983 Oct.3

Star	R.A. (19	50) Dec	Туре	Range	Period	Pr	Chart
CE Tau	05 29.3	+18 34	SRC	4.2 - 4.5V	165	В	1972 May 27
W Tri	02 38.4	+34 18	SRC	7.5 - 8.8V	108	B*	1973 Jul 8
T UMa	12 34.1	+59 46	м	6.6 - 13.5V	257	Т	066.01
Z UMa	11 53.9	+58 09	SRB	6.2 - 9.4V	196	B*	1984 Apr 12
RY UMa	12 18.1	+61 35	SRB	6.7 - 8.3V	3107	В	Z UMA
ST UMa	11 25.1	+45 28	SRB	6.0 - 7.6V	1107	В	1972 Jun 10
SU UMa	08 08.1	+62 45	UGSU	10.8 - 15.0V	19	Т	018.02
SW UMa	08 33.0	+53 39	UGSU	9.7 - 16.5V	460	Т	019.02
TV UMa	11 43.0	+36 10	SRB	6.8 - 7.3V	42	В	1982 Aug 16
VW UMa	10 55.6	+70.15	SR	6.9 - 7.7V	610	В	VY UMa
VY UMa	10 41.6	+67 40	LB	5.9 - 7.0V		В	1983 Jun 11
CH UMa	10 03.2	+67 47	UGSS	10.6 - 16.0B	204	Т	020.02
V UMi	13 37.8	+74 34	SRB	7.2 - 9.1V	72	B*	1981 May 10
RW Vir	12 04.7	-06 29	LB	6.7 - 7.4V		В	RX Vir
RX Vir	12 02.2	-05 30	SRD?	8.0 - 8.4V	200?	B *	1982 Feb 5
SS Vir	12 22.7	+01 03	SRA	6.0 - 9.6V	364	B *	1972 Aug 12
SW Vir	13 11.5	-02 33	SRB	6.4 - 7.9V	150?	В	1974 Jan 21
BK Vir	12 27.8	+04 42	SRB	7.3 - 8.8V	150?	B*	1974 Jan 21
V Vul	20 34.4	+26 26	RVA	8.1 - 9.5V	76	Т	058.01
PU Vul	20 19.0	+21 25	NC	8.7 - 16.6P		T	052.01
PW Vul	19 24.1	+24 16	N	6.4 - 17: V		Т	N008.01
QU Vul	20 24.7	+27 41	NA	5.6 - 19 V		Т	1987 Oct 3
QV Vul	19 02.5	+21 42	NA	7.0 - 19 V		Т	N007.02
Mark 421	11 01.7	+38 39	BLLAC	11.0 - 13.8V		Т	1984 Sep 9
NGC 4151	12 08.0	+39 41	GAL	10.8 - 12.7V		T	1984 Jul 15
3C 373	12 26.6	+02 20	QSO	12.4 - 13.2V		Т	1984 Jul 15

Key to abbreviations for Types of Variable

BLLAC BL Lac: variable starlike galaxy nucleus with flat radio spectrum and no strong emission lines

- E Eclipsing binary star
- EA Algol-type eclipsing binary, with contact times identifiable from light-curve. the suffix /G signifies giant component(s)
- GAL Optically variable galaxy nucleus
- GCAS Gamma Cas: shell star with temporary fades
- INA Orion variable of early spectral type: young object in diffuse nebula with irregular variations and occasional abrupt Algol-like fades
- LB Slow irregular variable of late spectral type
- LC Slow irregular supergiant variable of late spectral type
- M Mira: long-period variable star
- N Nova: thermonuclear runaway on white-dwarf component of close binary
- NA Fast nova, fading 3m in 100d or less
- NB Slow nova, fading 3m in 150d or more
- NC Very slow nova, at max. for more than 10 years; often classed with ZAND
- NR Recurrent nova
- QSO Optically variable quasar
- RCB R CrB: cyclic pulsations and irregular deep fades

- RVA RV Tau star (pulsating supergiant with alternating primary and secondary minimum) with constant mean magnitude
- RVB RV Tau star (pulsating supergiant with alternating primary and secondary minimum) with constant mean magnitude
- SDOR S Dor: high luminosity star, usually in diffuse nebula and with expanding shell
- SR Semiregular
- SRA Semiregular red giant with persistent periodicity
- SRB Semiregular red giant with poorly expressed periodicity
- SRC Semiregular red supergiant
- SRD Semiregular giant or supergiant of intermediate spectral type
- UG UGem: dwarf nova, with pulsed release of gravitational energy from accretion disk around white dwarf component of close binary
- UGSS SS Cyg: dwarf nova with outbursts lasting several days
- UGSU SU UMa: dwarf nova with short outbursts like UGSS, and occasional supermaxima 2m brighter and five times longer
- UGZ Z Cam: dwarf noave with cyclic outburst interrupted by standstills
- UV UV Cet: flare star
- X X-ray binary containing compact objsect (white dwarf, neutron star or black hole)
- XP X-ray pulsar, with period 1 sec. to 100 min., and slower light change due to rotation of ellipsoidal component
- ZAND Z And: symbiotic star, a close binary comprising a cool star and a hot one exciting an extended envelope
- ZZ ZZ Cet: non-radially pulsating white dwarf
- Unique variable

Analysis of Observations using Spearman's Rank Correlation Test Tony Markham

In VSSC 67, John Isles suggested using Spearman's Rank Correlation Test in order to test whether a series of observations provides evidence for variation in suspected variables. In this test, the observations are ranked in order of decreasing brightness and the ranks of consecutive observations are compared in order to calculate the rank correlation coefficient:

 $r_{s} = 1 - \frac{(6 \times \text{SSRD})}{n(n^2 - 1)}$

where SSRD is the sum of the squared rank differences and n is the number of observations. The calculated value of r_i is then compared with critical values in order to test how likely it is that the result could be produced by chance. For example, there is a 1 in 20 probability of obtaining, purely by chance, a value of r_i greater than the critical value for the significance level of 5%.

Using the method as described in VSSC 67, I have analysed my observation of three suspected variables and nine recognised variables for the period 1987 Sep. 04 to 1990 Nov. 20. Class 3 observations were excluded. The results may be summarised as follows:

Star	Туре	Obs	Scatter	<i>r</i> .	Critica 5%	nl values 1 <i>%</i>
SAO 37652 And Rho Cas	Suspect SRD	26 31	6.5-6.8 4.8-5.1	0.33 0.05	0.34 0.31	0.47 0.42
R CrB	RCB	37	6.1-8.6	0.68	0.28	0.38
CH Cyg V1070 Cyg	ZAND SR	18 13	7.6-9.1 7.3-7.5	0.67 -0.21	0.41 0.48	0.56 0.67
Chi Cyg	M	13	4.5-8.4	0.40	0.48	0.67
TX Dra SAO 78074 Gem	SRB Suspect	26 22	7.1-7.9 6.8-7.3	0.13 0.20	0.34 0.37	0.47 0.51
Alpha Her	SR	8	3.2-3.4	-0.10	0.64	0.83
Beta Lyr Epsilon Peg	EB Suspect	34 20	3.2-3.9 2.6-2.8	0.02 -0.35	0.29 0.38	0.40 0.53
R Sct	RVA	24	5.4-6.9	0.03	0.35	0.49

SAO 37652 is a star labelled NWV 015140 on a chart for BS 551 And that I obtained from Colin Henshaw. SAO 78074 is comparison H on the BAA VSS chart for TV Gem. All three suspects fail the test at the 5 % significance level - but so do seven of the nine recognised variables!

Two factors that almost certainly affected the results are:

- (i) The observations were made from a variety of observing sites: Cholsey (Oxon.), Leven (E. Yorks.), Bath (Avon), and Leek (Staffs.).
- (ii) The observations were not uniformly distributed throughout the three-year period. The majority were made late in 1987. Observations were sparse in 1988 and 1989. Thus, for example, an observation of TD Dra near minimum in 1988 Dec. was followed chronologically by one near maximum in 1989 Apr., which was then followed by one near minimum in 1989 Aug. This led to large rank differences and reduced the value of $r_{\rm c}$ calculated for TX Dra.

In order to obtain results with a reduced contribution from the above factors, a similar analysis of my observations was made for the period 1985 July to 1986 May 12. These observations were almost all made from Cholsey, Oxon. The results are summarised below:

Star	Туре	Obs	Scatter	<i>r</i> ,	Critical values		
•				-	5%	1%	
SAO 37652 And	Suspect	17	6.5-6.8	-0.36	0.42	0.59	
Rho Cas	SRD	26	4.9-5.1	-0.26	0.34	0.47	
R CrB	RCB	30	6.2-7.1	0.74	0.31	0.43	
CH Cyg	ZAND	35	7.6-8.3	0.77	0.29	0.40	
V1070 Cyg	SR	17	7.3-7.5	0.23	0.42	0.59	

Star	Туре	Obs	Scatter	r , 10	Critica 5%	al values 1%
Chi Cyg	M	8	5.8-8.9	0.26	0.64	0.83
TX Dra	SRB	21	7.1-7.8	0.73	0.37	0.52
SAO 78074 Gem	Suspect	17	6.8-7.2	0.56	0.42	0.59
Alpha Her	SR	18	3.3-3.6	0.26	0.40	0.56
Beta Lyr	EB	43	3.3-3.9	-0.12	0.24	0.34
Epsilon Peg	Suspect	16	2.4-2.8	0.36	0.43	0.60
R Sct	RVĀ	24	5.4-8.2	0,79	0.35	0.49

Eight of the stars score higher than in the first analysis. Now only seven of the twelve stars fail the test at the 5 % significance level. It is, however, rather disturbing to see that SAO 78074 Gem, with an observed amplitude of 0.4 mag., passes the test, but Chi Cygni, with an observed amplitude of 3.1 mag., fails! The Chi Cygni observations were made as the star faded from maximum during the summer of 1985. The low value of $r_{\rm s}$ is a consequence of including the rank difference between the first and last observations - in this case, the brightest and faintest observations.

Four other recognised variables fail the test. Of these, three are semi-regular variables with small observed amplitudes and the fourth is an eclipsing binary.

Although, as the results for Chi Cygni show, stars with large observed amplitudes do not fare well in Spearman's Rank Correlation Test, stars with small observed amplitudes generally fare poorly. In such cases there will often be many observations of the same magnitude and thus even if a particular observation is of the same magnitude as the previous and next observations, when such observations are ranked randomly, large rank differences are probable.

The results for Beta Lyrae illustrate another limitation of the test. The period of Beta Lyrae is much shorter than the periods of the other stars and the number of observations in each cycle is small. Minima, if observed, are usually marked by a single observation. Thus clustering of fainter observations is unlikely to be seen.

Beta Lyrae would probably have scored higher if observations had been made more frequently. Similarly, Chi Cygni would probably have scored higher if a longer series of observations was available.

Results for some stars will inevitably be time-dependent. If there had been no minima of R CrB in the analysis periods, it is likely that the values of $r_{\rm c}$ calculated would have been somewhat lower. Similarly, many semiregular variables show episodes of little activity lasting months or years interspersed with episode of higher activity. The values of $r_{\rm s}$ in the low-activity periods are likely to be somewhat lower than those calculated during the high-activity periods.

A further complication may arise from the method used to 'randomly' assign ranks to observations of equal magnitudes. Assigning ranks 'randomly' via two different methods or even by applying the same method twice could lead to widely differing values of $r_{\rm o}$. Indeed, the relatively high values of $r_{\rm o}$ for Epsilon Peg and SAO 78074 Gem in the second analysis may have arisen from what look like favourable distributions of 'randomly' distributed ranks among the observations of equal magnitudes.

The above results and comments should not be taken as implying that Spearman's Rank Correlation Test should not be used - they just demonstrate how using the test in isolation could lead to misleading results and incorrect conclusions regarding variability.

John Isles comments: I agree that, like any test, this one can give misleading results if the distribution of observations is unfortunate, the sample size is small, or the test is applied in inappropriate cases (such, perhaps, as the Chi Cyg and Beta Lyrae data mentioned). A negative result does not imply that the star is not variable, but only that the observations as processed in the test did not show evidence for variation.

Tristram correctly points out that the result can vary according to how tied observations are randomized, especially if there are many ties. A way round the problem is to take the mean of several test results with different randomizations. This is easy with a computer program, like that given in Apex, 1 (4), 16 (1983).

VSS Reports

(The full text of these reports has been, or will be published in the BAA *Journal*. Offprints may be obtained from the Assistant Director.)

The Multi-periodicity of W Cygni (J. J. Howarth)

The behaviour of the variable star W Cygni has been analysed from the past 89 years of BAA observations. Periods of approximately 131 and 234 days are evident, both being subject to apparently random shifts in phase and amplitude.

Eclipsing Binaries, Pegasus to Sagittarius, in 1972-1987 (J. E. Isles)

Photoelectric and visual observations of 34 known and suspected eclipsing binaries are discussed. Revised light elements are derived for DM Per and Beta Per. EL Sge is confirmed to vary with a period of approximately 0.333 d. Large deviations from the published elements are reported for BG Peg, AB Per, LS Per, SU Psc, SZ Psc and TU Sge. The catalogue period of BQ Peg is probably incorrect.

Symbiotic Stars in 1988-1989 (J. E. Isles)

Visual observations of 28 stars are discussed. These represent the first BAA contribution to an international campaign of long-term photometric monitoring of symbiotic stars.

[The following four pages show plots of raw, uncorrected data covering a period of ten years' observations of one of the first stars to be computerized: AH Dra.]

PRO-AM LIAISON COMMITTEE (PALC-VS) NEWSLETTER No.3

Readers' attention is called to the Notice about the forthcoming Variable Star Section Meeting in the accompanying *Circular* (p.1), and to the list of unpublished data held by the Section (p.27).

Call for Campaign of Long-term Photometry of Symbiotic Stars Dr Ladislav Hric and Dr Augustin Skopal

Astronomical Institute of the Slovak Academy of Sciences, 059 60 T. Lomnica, Czechoslovakia

We suggest the launching of an observing campaign of photometry of 28 selected symbiotic stars (SS).

SS are characterized by the combination of an absorption spectrum of a cool star and an emission spectrum of highly excited lines. A model of an interacting binary with orbital period longer than 200 days, and consisting of a cool red giant and a hot compact component embedded in a circumstellar envelope, is generally accepted as an explanation of the behaviour of SS. Long-term (weeks to decades) variations of the brightness (amplitudes 2 to 7 mag), related to the outbursts of SS and sometimes also to orbital motion of the components, are commonly observed in SS. In some cases, short-term (minutes to hours) variations (amplitudes 0.001 to 1 mag) are seen, very probably caused by physical effects in the accreted material around the compact component. The changes of brightness are sudden and unexpected, being the outcome of strong interaction between the components, although their true cause could be different for particular systems.

Detailed information on SS may be found in the quoted references and also in the volume "The Symbiotic Phenomenon", Proceedings of the 103rd Colloquium of the IAU, Torun, Poland, 1987 August 18-20, edited by Mikolajewska, J., Friedjung, M., Kenyon, S.J., and Viotti, R., Dordrecht, Holland.

The proposed programme is aimed at long-term photometry mainly in the Johnson UBV system. Its purposes are:

- (i) compilation and publication of the original photometric data; and
- (ii) making sense of the observations of long-term variations of brightness for various SS and also for a single observer.

The aims of the programme could be well fulfilled by rather short (an hour) observations and therefore it is quite suitable for filling in the gaps between other planned observations. Thus participation in the campaign could enhance the efficiency of using your instrument without disturbing your main research programme. Everybody who wishes to participate could select an arbitrary SS (not only those that are proposed by the writers) that could be most easily added to his or her own programme.

All contributions will be gathered by the writers and subsequently published in Contr. Astron. Obs. Skalnaté Pleso annually (September deadline). All astronomers who submit good quality data will become co-authors of the paper and will receive a reprint of it.

The proposed list contains SS accessible from the northern hemisphere and bright enough for photometry in a small telescope. The data in our list were taken from the book by Kenyon (1986). The values of V magnitudes and spectral types serve for orientation only and describe predominantly the cold components of SS. In addition we have prepared finding charts for every programme SS after Becvar (1962, 1964), POSS (1953), Dixon et al. (1985) and Allen (1984). We selected the comparison stars following the catalogue by Blanco et al. (1968) and the SAO Star Catalog (1966).

In all cases the comparison star S1 was measured in all colours of the UBV system. We recommend observers to derive secondary comparison stars in cases when the angular distance between SS and S1 is rather large. The observations should be reduced to the international colour system.

We are ready to submit complete campaign instructions to the participants upon request. Of course, all additions and suggestions from the participants are most welcome.

References

Allen, D.A., 1984, Proc. ASA, 5, 369.
Becvar, A., 1962, Atlas Borealis, Praha.
Becvar, A., 1964, Atlas Eclipticalis, Praha.
Blanco, D.M., Demers, S., Douglas, G.G., Fitzgerald, M.P., 1968, Publ. U.S. Naval Obs., 2nd ser., 21.

Dixon, R.S., Gearhart, M.R., Schmidtke, P.C., 1985, Atlas of Sky Overlap Maps (for the POSS), 2nd edition, Ohio State University Radio Observatory.

Kenyon, S.J., 1986, *The Symbiotic Stars*, University Press, Cambridge. Smithsonian Astrophysical Observatory Star Catalogue, 1966, vols 1, 2, 3.

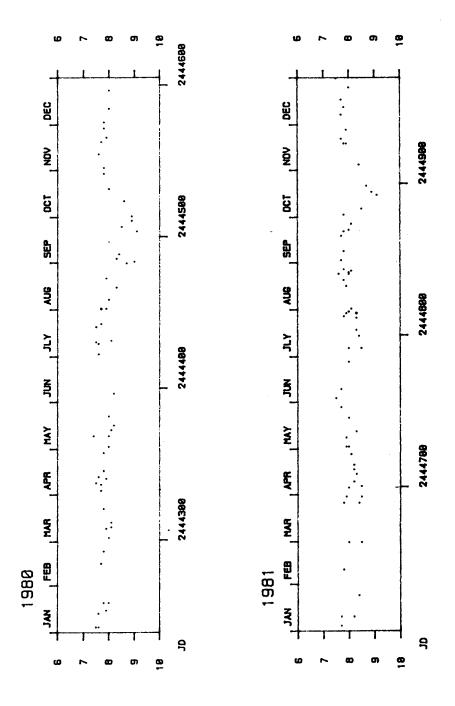
Editorial Note. The list of selected symbiotic stars was published in IBVS 3364 and in BAA *Circular* 697. The above article refers mainly to photoelectric photometry, and observers able to undertake this work are invited to contact Roger Pickard who holds copies of the finding charts and comparison star sequences (for PEP observers only). In a covering letter to the Director, Dr Hric states that visual observations will also be very useful. See the article by John Isles in the accompanying VSS Circular for further information.

Pro-Am Exchanges Report 1989 Guy M Hurst

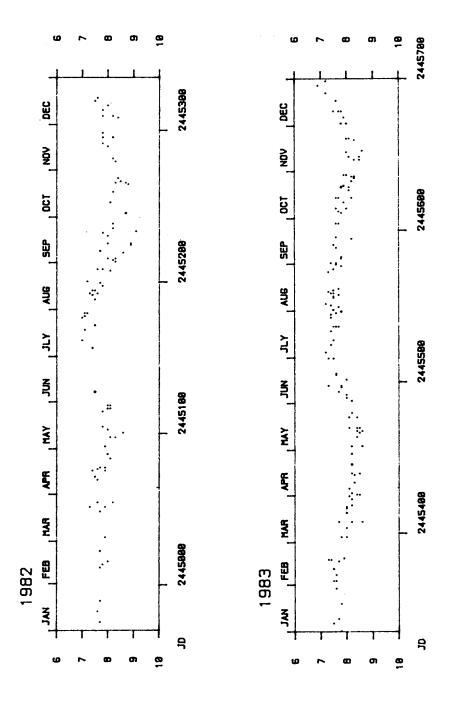
This report (covering the period 1989 January 1 to 1989 April 30) includes 96 major exchanges logged during 1989, virtually all using electronic-mail. Of these 49 related to variable stars or potential discoveries of novae/supernovae. In addition to the above

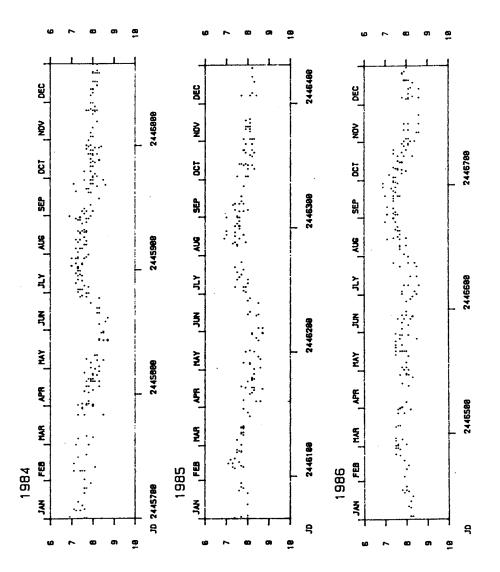
list there were numerous minor exchanges of data on most days throughout the year. Report 1 (1988 June - Dec) listed 43 exchanges. Thus the total logged to date amounts to 139.

Professional Date Subject 001) 890105 Comet 1989a Brian Marsden, USA Astrometry by D.Buczynski and B.Manning enabling first orbital elements to be derived (IAUC 4700). Phil Charles/Mark Kidger, Tenerife 890105 UG Stars 002) Observations RX And and YZ Cnc relayed from P.Schmeer (Germany) and M. Westlund (Sweden). This continuing programme involved about 30 e-mail messages from amateurs all over Europe relayed to Tenerife. 003) 890106 Eruptive in Crater Brian Marsden, USA Observations of newly discovered UG star in Crater secured by the discoverer, Richard Fleet in Zimbabwe relayed to Bureau. Chiron Occultation Dave Tholen, Hawaii 004) 890109 Enquiry from Swedish amateurs wanting to try for occultation event. Data from Dave Tholen relayed to them. Mark Kidger, Tenerife 005) 890109 Nova And 1988 Photoelectric photometry of nova and nearby sequence stars confirming object has returned to minimum near 18.2 on 1988 July 20. 890110 David Pike (006) Fadars Further exchanges on this continuing program 890110 Russell Eberst, Scotland 007) Satellite Identifies object reported in TA 1988/11 as 75-91B, Centaur rocket. 008) 890111 **NSV 01098** Brian Marsden, Central Bureau Rediscovery of NSV 01098 by Mike Collins, Sandy relayed for publication in IAUC. (IAUC 4712) Graeme Waddington, oxford 009) 890112 Lunar eclipses Naked eye observations of umbra/penumbra boundary when close to horizon. 010) 890113 Asteroid 1989 AC Graemc Waddington, Oxford Data from Oxford helped amateur Paul Leyland to observe this newly-discovered asteroid. 011) 890115 Nova And 1988 Phil Charles, Tenerife P.Leyland had reported possible second outburst but this was not confirmed by professionals at Tenerife. 890118 YZ Cnc Phil Charles, Tenerife 012) Feedback to our YZ Cnc results is star varying about 0.5 mags in 2h4m orbital period, also 1.4mag in infrared in 2 hours. 013) 890113 Nova And Phil Charles, Tenerife Spectra obtained with INT at our request. Phil suggests it is WZ-Sge type. 014) 890131 SN 1988B Phil Charles, Tenerife We alerted Phil re SN before IAUC thanks to e-mail from Bob Evans in Australia (discoverer). Phil obtained spectrum on WHT. 015) 890201 Fadars D. Pike, ESO, Madrid. INT spectroscopy time confirmed for David. We agree continued visual coverage.

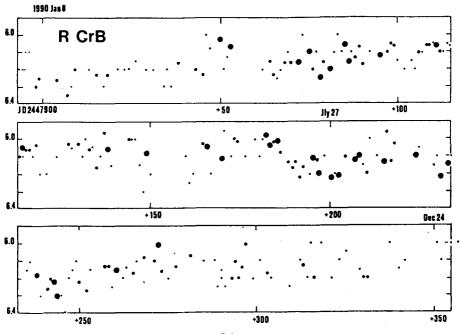

Date Subje	ct in the sale in the segment	Professional
016) 890202 SN 19 Independent discovery by Alan I		Brian Marsden, USA Central Bureau.
017) 890211 YZ Cr Outburst of YZ Crc reported to		M. Kidger, P.Charles, Tenerife me on these stars.
018) 890208 760 M Preliminary details of occultation		Larry Wasserman
019) 890216 Optics Advice requested on optics for s		Richard Hook, ESO, Germany
020) 890302 LL Ar Request to Paul for finder as ch encouragement to monitor.		P. Wild, Switzerland ect not published. He duly supplied this with
021) 890306 UGs Draft paper supplied on the 198 Variables in response to our obs	8 International Time Pro	P. Charles, M.Kidger ject: Accretion Disc Evolution in Cataclysmic
022) 890309 Fadar VX Cas, SV Cep, V586 Ori, V35		D. Pike, ESO, Madrid. be monitored. Six amateurs scheduled to assist.
023) 890311 RZ Le Outburst detected by S.Korth & P IAUC 4757.		Brian Marsden, USA red to Bureau. Confirmed by G.Hurst. Published
024) 890311 SN 19 Data exchanged on light curve to		M.Kidger, Tenerife
025) 890313 3C 34 Request for astrophotographers		M.Kidger, Tenerife
026) 890315 Z Can Message of standstill seen by So Ohio. Published IAUC 4757.		AAVSO, Ohio State University ed via AAVSO to professional astronomers in
027) 890328 CY U Rare outburst detected by P.Schr		Brian Marsden, USA yed to Bureau. Published IAUC 4763/4765
028) 890331 Erupti Planning spectroscopy of Fleet's	ve in Crater	Bruce Margon, Cerro Tololo
029) 890401 Titan (Requested full details as it looks		Larry Wassermann rope.
030) 890404 Erupti Outburst detected by J. Toone, re		Brian Marsden, USA
		Brian Marsden, Mark Kidger bbock and Hurst check visually and deconfirm.
032) 890408 Fadars First observations by Crayford to		D.Pike, ESO y messages relating to this project.
033) 890419 Pro-Al We agree meeting in UK to discu		Brian Marsden, USA ith Central Bureau on a variety of matters.

	Date	Subject	Professional
034) Bruce conf	890419 Tirms spectra o	Eruptive in Crater obtained and results to appear sh	Bruce Margon nortly.
035) Unpublish	890422 ed chart of thi	LL And s object received to aid monitor	Paul Wild, Switzerland ing.
036) Possible S	890501 N report recei (1989/28) Sub	Pos SN in NGC 3147 ved at Central Bureau. Stephen	Brian Marsden, USA Lubbock checked as recently as Apr 24 but no ained photo May 4 with 0.55-m refl. and finds no
037) Photoelect	890503 ric photometry	SN 1989B y of 3 comparison stars supplied	Mark Kidger, Tenerife I to check our sequence.
	890506 sden agrees to ing comets.	Sungrazers give a talk at the TA AGM on Ju	Brian Marsden, USA une 24 regarding new research he has carried out
		Pos SN in M51 on May 6, mag 13. Photos by 1 ect to mag 15.	Brian Marsden, USA Martin Mobberley and Denis Buczynski on May
	890509 an to check for wn'. SN not c		Brian Marsden, USA N seen by Paul Davies in UK as normal computer
041) We relay o	890511 bservations of	Fadars f SV Cep by Margareta Westlur	David Pike (RLVAD) nd of Sweden.
			Brian Marsden USA/R. Kushida (Japan) ey says no new object to mag 15 on May 7 and eports nothing to mag 15 on May 18/19 photos.
	890523 receive TA e Chung-Li, Ta		Chein-Shiu Kuo, Taiwan formed of vs activity. Based National Central
		GS2023+338 V404 Cygni (=Nova Cyg 1938)' urst. This confirmation publishe	Brian Marsden, USA ? Martin Mobberley photographed May 26.99UT ed on IAUC 4783.
	890601 N.Carolina su new object.	Pos SN N6207 Ispects SN mag 11-12. Photos Ju	Brian Marsden, USA me 1 by Martin Mobberley and Denis Buczynski
046) Photovisua IAUC 4790		V404 Cyg May 26 -29 by Martin Mobber	Brian Marsden, USA ley relayed to Central Bureau and published on
(New Zeal		ed IAUC 4792. Bruce Margon	Brian Marsden/Bruce Margon USA e, Australia. Confirmation obtained by A. Jones et al subsequently obtained spectra at Anglo-
048) Thanks rec	890604 eived for alert	V404 Cygni t. Photometry and spectroscopy	Phil Charles, La Palma obtained.


Date Subject Professional 890612 Brorsen-Metcalf Dan Green, USA 049) P. Birtwhistle asks for probable T error in connection with analysis and this is supplied promptly by CBAT. 050) 890619 SN 1989B Mark Kidger, Tenerife Further measures of sequence stars supplied to us. 051) 890626 WX Ceti Bruce Margon, USA Report from Rob McNaught, Australia on second fade to 15.6 on June 25.8 relayed to Bruce Margon. Published IAUC 4814. Titan Occultation Brian Marsden, USA 052) 890704 Timings by G. Hurst and M. Hurst relayed to CBAT same night! Published IAUC 4801 053) 890706 **Titan Occultation** Mark Kidger, Tenerife Detailed report received from Tenerife/La Palma observers. Relayed to CBAT and published IAUC 4803. 054) 890718 Jupiter SEB fade Brian Marsden, USA Report from S. Torrell et al Barcelona of SEB fade relayed to Central Bureau and key planetary observers. R.Moseley and D.Buczynski confirmed July 18.11-18.14UT. Published IAUC 4815. 890725 Algol Predictions Robert Smith, Sussex 055) We supply data on these predictions obtained from BAA Sources. 056) 890726 Fadars David Pike, RLVAD Requests continued monitoring of SV Cep, VX Cas, V351, V346, V586 and UX Ori by our group. 057) 890728 **GK** Persei Brian Marsden, USA Report from W.Worraker of minor outburst of GK Per relayed to CBAT. Confirmation by P.Schmeer, Germany. Published IAUC 4819. 890812 058) VY Aquarii Brian Marsden, USA D.Buczynski, deputising during my holidays, reports to CBAT details of an outburst of VY Aqr by K.Medway (Soton) and P.Schmeer (Germany). Published IAUC 4834. 059) 890820 1989 PB Brian Marsden, USA Astrometry by Brian Manning for Aug 17 sent to CBAT in response to their 'high-priority' appeal. This, coupled with results from McNaught, used for radar-bouncing at Arecibo. 890828 Comet 1989r 060) Brian Marsden, USA Astrometry of 1989r by Brian Manning supplied to CBAT. 061) 890830 Eclip.Binary Mark Kidger, Tenerife Asks us to search GCVS, NSV re possible new vs. Nothing found. 062) 890812 VS Discoveries C.J. Skinner, I.P.Griffin, London List of discoveries by M.Collins supplied in view of professional interest in Extreme Carbon Stars. Response from ZUVAD::CJS suggesting Mike continues to relay data on his discoveries to them. 890914 063) Asteroid Search Rob McNaught/Brian Marsden Article from R.McNaught suggesting British observers look for new asteroids!! 064) 890914 Comet 1989r Brian Marsden, USA Astrometry by Brian Manning Aug 31 sent to CBAT. 065) 890918 Pos Nova Sgr Brian Marsden, USA CBAT relay report from W.Albrecht, USA of possible nova in Sgr. R.McNaught finds it is a field star simply missing from AAVSO chart! IAUC 4856.


	Date	Subject	Professional
066)	890922	Fadars	David Pike, RLVAD
David repo	orts spectra ob	tained in 4 nights during 1989 A	ug. Requests continued coverage by ouyr group.
067) **Two pro	891005 bable new ast	New Asteroids!! eroids discovered by Brian Mar	Brian Marsden, USA ning - astrometry for Oct 4 relayed to CBAT.**
068) CBAT adv January!).		New Asteroids last minor planet discovered in l	Brian Marsden, USA JK which was numbered was (676) Melitta (1909
069) Confirmat	891006 ion with furth	New Asteroids er astrometry of first 2 Manning	Brian Marsden, USA asteroids relayed to CBAT.
070) Two 'new by CBAT.	'asteroids desi	New Asteroids ignated A0001 and A0002. Late	Brian Marsden, USA r 1989 TE and 1989 TF. Vaisala orbits supplied
CBAT link	891010 c 1989 TF with a lost object.		Brian Marsden, USA ncipal discovery. Effectively Brian Manning has
	891011 modems soug	Modems ght and supplied.	M.White, RGO
	891012 g of changing parent subsequ		J.Lightfoot, REVAD::JFL la requested. Relayed to BAA Deep Sky Section
	rdwell and Br	1989 TF=1968 OF. ian Marsden supplied detailed da	Brian Marsden, USA Ita on the linkage of Brian Manning's new object
075 Detailed g	891016 uidance given	Asteroids IDs. on complex procedures for idea	Brian Marsden, C. Bardwell, USA ntifying asteroids and assessing priority claims.
076) Outburst o	891016 of UV Per by (UV Persei G.Poyner Oct 16.8UT relayed to	Brian Marsden, USA CBAT.
077) Confirmati IAUC 488	891017 ion of current 0. Superhump	outburst by J. Isles, Cyprus and	Brian Marsden, USA G. Hurst Basingstoke sent to CBAT. Published orted by A. Udalski, Toronto on IAUC 4885.
		Manning 3 & 4 ds found by Brian Manning on Naught confirms object 4 on pre	Brian Marsden, USA discovery photos for objects 1 & 2. Astrometry vious photo of Oct 8.
079 <u>)</u> CBAT rep			Brian Marsden, USA 46 and also may be same as 1982 TB.
080) Good phot	891024 o of this come	Brorsen-Metcalf et requested and supplied by Ma	Mark Kidger, Tenerife. rtin Mobberley.
	891025 ning's asteroid 8 by Alan Picl	d found on UKSTU plates of 19	Brian Marsden, USA 78 May 7 and linkage with 1982 TB confirmed.

	Date	Subject	Professional
(2506) A9	ides full list o 10HA = 1910	KB (1910 Apr 27) for numbered	Brian Marsden, USA tour request which cover 7 Iris (1847 Aug 13) to objects. Also mentions 1986 Dec 1 and 6 objects which are one-night stands and unnumbered.
	t copies of Pai	st Recurrent VS Iomar Sky Survey Fields for 'lo Aql; TY Vul; V1060 Cyg. Duly	Graeme Waddington, Oxford. st' recurrent variable stars: FN And; PR Her, CI v supplied.
084) New astero	891106 bidal discover	Manning 5-8 ies objects 5,6,7,8 found Oct 31	Brian Marsden, USA -Nov 4 relayed to CBAT.
085) To assist w today.	891109 ith rapid exch	BHVAD/Manning anges on asteroidal discoveries,	Bill Wilson, BHVAD Brian Manning granted STARLINK at BHVAD
086) Astrometry	891114 by Brian Mar	Asteroids nning and measures by him of pl	Brian Marsden, USA ates obtained by D.Buczynski relayed to CBAT.
which is an	nbiguous on re		Brian Marsden, USA layed by CBAT. They ask us to check direction ands, responded to our alert with confirmation on rseth-Brewington (1989a1).
088) Appeal for		Comet 1989a1 no precise positions at all at Cl	Brian Marsden, USA BAT!
089) Outburst of 4908.	891120 f DX And fou	DX And nd by P.Schmeer, Germany on	Brian Marsden, USA Nov 19 and relayed to CBAT. Published IAUC
090) Astrometry	891122 by G.Marsh	Comet 1989a1 and D.Buczynski for Nov 22 re	Brian Marsden, USA layed to CBAT.
	irst contact wi	Yugoslavia ith Yugoslavia when we receive set us up to communicate regula	Ralph Martin, RGO ed news from Herman Mikuz and B.Dintinjana. arly.
092) Discovery	891208 of new asteroi	Asteroid d by Brian Manning on Nov 22	Brian Marsden, USA relayed to CBAT.
093) Detailed or	891213 bits and carlie	Asteroid Orbits r identifications for Brian Man	Brian Marsden, USA ning's discoveries supplied by CBAT.
			Brian Marsden, USA relay astrometry of new comet recorded on Dec 4930 as Comet McKenzie-Russell (1989f1).
095) Astrometry	891228 of various as	Asteroids teroids found by Brian Manning	Brian Marsden, USA ; relayed to CBAT.
096) Astrometry	891229 of this cornet	Comet 1989e1 by D.Buczynski on 1989 Dec 2	Brian Marsden, USA 25-27 relayed to CBAT.



R CrB in 1990

Melvyn Taylor

Peculiar activity had been reported during last year so a preliminary look at VSS data submitted up to the end of January 1991 seemed appropriate. Only estimates made by observers who had covered R CrB for ten months or more of the year were used; a total of 609 made on 238 days. From these 158 daily mean magnitudes were found. The light-curve is drawn with the following conventions: the smallest dot is a single estimate or the mean of two; the intermediate size dot a mean magnitude of three or four estimates; and the largest dot a mean of from five to eight estimates. The typical standard error of a single estimate was determined as 0.14 mag. The mean magnitude of R CrB from the daily means is 6.14 (s.d. 0.09 mag.) for the year. Extreme variation is 5.94 to 6.4 for the daily means with four individual estimates outside this range: Jly 5, 5.9; Aug 14, 5.6; Oct 9, 5.8; and Dec 27, 6.5. There has been no attempt to account for differences in observers' personal equations from the daily means or single estimates. It appears that variations of about 0.2 mag over 2 day or so are seen in the data. Longer-term changes show the star rising from about 6.3 at the beginning of the year with four brighter phases appearing in late February (6.0); early July (6.0), mid-August (6.1) and early October (6.0). Periodic phases took the star to either 6.2 or 6.3 between these maxima. At year's end R CrB's magnitude was about 6.0. The observations from Albrighton, Brundle, Dryden, Fraser, R., Fraser, J., Gainsford, Gavine, Kiernan, Pointer, Poyner, Ramsay, Shanklin, Taylor and Worraker have all been used.

Minima of Eclipsing Binaries, 1988 John Isles

The numbers of observations received for known and suspected eclipsing variables in 1988, including estimates reserved for separate discussion, are given below.

8 i	Observations		Timings	
Photoelect		·		
	J Ells (EJ)	3294	42	
	J Watson (TW)	40	3	
	Total	3334	45	
Visual:			•	
	N Bone (B1)	33	1	
	T Brelstaff	834	11	
	A Chapman (C1)	34	2	
1	D Conner (C2)	71	5	
	H Duncan (DH)	392	10	
	R Fraser	6		
	J Isles (IS)	600	5	
	G Kirby (KG)	122	. 9	
	G Maris	31	-	
	K Marshall	5	-	
	I Middlemist (MM)	76	6	
	J Peck	4	-	
	G Pointer (P1)	123	5	
	A Smeaton	28		
	J S Smith	10	•	
	S Srinivasan (S1)	80	2	
	M D Taylor (TY)	136	10	
	P Wheeler (WH)	90	5	
	W Williams	3	-	
	K Xylaris	17	•	
-	Composite timings	-	2	
an a	Total	2734	73	
:	Grand total	5068	118	

The codes B1, C1, C2, P1 and S1 are temporary, pending the allocation of final VSS codes to these observers by the Computer Secretary. The code EJ indicates timings made with the Jack Ells Automatic Photoelectric Telescope, including runs in which other observers assisted, usually either D. J. Ells or P. E. Ells. In the accompanying list of observed minima, photoelectric determinations are distinguished by "(pe)" after the observer abbreviation. The times of minima were derived using a computer

program analogous to the tracing-paper method, except for some minima by EJ which were found by fitting a parabola by least-squares. The quoted numbers of observations are those used in the analysis, which may be fewer than the total number actually made. A colon indicates uncertainty and has exactly the same meaning as a question mark in some earlier lists. For further explanations, see VSSC 58.

An asterisk draws attention to further information in the following notes.

UW Ori: The GCVS elements are incorrect. Epoch and O-C are calculated using the elements of IBVS 3409.

For certain stars, all estimates made in the year were folded onto a single cycle in order to derive the timings. The dates covered by the observations were as follows: ST Aqr 7442-524, OO Aql 7440-73, V822 Aql 7347-486, GK Cep 7163-524 (DH) and 7388-465 (P1), V367 Cyg 7163-524, 68u Her 7226-503 (BS) and 7206-496 (DH), Beta Lyr 7163-524, V1010 Oph 7344-97, UW Ori 7167-471.

The numbers of estimates given against certain minima include estimates made on other nights that were also used in deriving the time of minimum. These were as follows.

Star	Date	No	Other dates
AB And	7470	4	7466-94
	7486	14	7466-508
IM Aur	7465	7	7183-480
RZ Cas	7369	8	7290-382
	7480	4	7222-468
TV Cas	7417	1	7388
RZ Com	7275	5	7315
AR Lac	7523	15	7434-521
	7526	9	7435-524
U Oph	7353	12	7348-410
•	7411	9	7416-68
Beta Per	7181	5	7198
	7347	2	7350
	7393	5	7413
	7436	7	7442
	7462	9	7416
	7502 (BS)	3	7505
	7505	8	7465-502
BV Tau	7206	10	7204-8
HU Tau	7487	2	7483

Observed Minima

Star	Epoch	Helio JD 244	0-C	No	Observer	-
AB And	34231	7470.573:	-0.006:	6	C2	*
	34278.5	7486.346	+0.001	17	C2	*
	34345	7508.410	-0.005	7	C2	
BX And	17875	7434.5779	-0.0115	28	EJ (pe)	
ST Aqr	7991	7477.244	-0.005	15	S 1	*
OO Aql	17419.5	7441.226:	+0.002:	9	S 1	•
V346 Aql	4937	7380.498	0.000	10	C2	
•	4965	7411.476	-0.001	20	KG	
V822 Aql	905	7369.309:	+0.047:	24	DH	
SX Aur	5822	7207.4215	-0.0009	26	EJ (pe)	
TT Aur	19677	7466.4738	-0.0092	24	EJ (pe)	
WW Aur	5750.5	7465.6626	+0.0003	20	EJ (pe)	
	576 9	7512.388	+0.013	12	TY	
AR Aur	2193	7469.508	-0.061	7	B 1	
EO Aur	6457	7442.5895	+0.0284	75	EJ (pe)	
IM Aur	5572	7465.384	-0.095	10	WH	*
	5597	7496.6167	-0.0455	31	EJ (pe)	
	5612	7515.3262	-0.0455	38	EJ (pe)	
	5612	7515.336	-0.035	9	ТҮ	
SV Cam	7776	7206.332	+0.005	10	KG	÷ŕ
AW Cam	11344	7488.6050	-0.0051	· 26	EJ (pe)	
	11379	7515.6040	-0.0032	49	EJ (pe)	
RZ Cas	3350	7204.379	-0.005	6	KG	
	3350	7204.426	+0.043	5	DH	
	3488	7369.359	+0.031	9	DH	*
	3545	7437.467	+0.010	9	C1	
	3570	7467.344	+0.006	6	WH	
	3570	7467.346	+0.008	9	P1	
	3570 ·	7467.3493	+0.0112	17	EJ (pe)	
	3575	7473.331	+0.017	6	WH	
	3581	7480.490	+0.004	10	WH	*
	3591	7492.461	+0.023	13	TY	

Star	Epoch	Helio JD 244	0 - C	No	Observer	
TV Cas	1553	7417.389	-0.026	4	P1	*
	1563	7435.5408	+0.0005	39	EJ (pe)	
	1607	7515.309	+0.015	9	TY	
TW Cas	3820	7464.5779	-0.0071	34	EJ (pe)	
DO Cas	19773	7464.3617	+0.0016	32	EJ (pe)	
	19786.5	7473.6054	+0.0023	50	EJ (pe)	
V523 Cas	26386	7386.480	+0.014	14	KG	
	26420	7394.419	+0.007	6 C.N	KG	
VW Cep	11192.5	7272.4109	-0.0383	14	EJ (pe)	
	11193	7272.4597	-0.0387	19	EJ (pe)	
	11803.5	7442.4613	-0.0382	12	TW (pe)	
	11814	7445.3769	-0.0449	13	TW (pe)	
WX Cep	6611	7423.4991	+0.0060	55	EJ (pe)	
ZZ Cep	9111	7442.3864	-0.0044	36	EJ (pe)	
CQ Cep	9112.5	7412.4897	-0.0598	103	EJ (pe)	
CW Cep	4430	7463.5122	-0.0276	31	EJ (pe)	
-	4435.5	7478.5605:	+0.0104:	24	EJ (pe)	
EI Cep	1256.5	7424.5150	+0.0253	40	EJ (pe)	
_	1263	7479.3746:	+0.0293:	22	EJ (pe)	
GK Cep	9260	7363.608:	+0.087:	52	DH	*
	9260.5	7364.022:	+0.034:	40	DH	*
	9316.5	7416.4823	+0.0693	23	EJ (pe)	
	9 317.5	7417.384:	+0.034:	4	P1	< #
	9373	7469.3716	+0.0657	23	EJ (pe)	
	9373	7469.391	+0.085	11	MM	
	9374	7470.349	+0.107	8	MM	
GT Cep	4448	7462.5279	+0.1312	61	EJ (pe)	
RZ Com	36744	7275.477	-0.009	9	KG	*
CC Com	34850	7224.446	-0.054	7	KG	
GO Cyg	18864	7470.3398	+0.0375	32	EJ (pe)	
MR Cyg	8372	7436.5339	+0.0016	61	EJ (pe)	
V367 Cyg	537	7377.27	-0.56	33	DH	*
	537.5	7387.57	+0.44	34	DH	*
V453 Cyg	2075	7411.4698	+0.0099	75	EJ (pe)	

.

Star	Epoch	Helio JD 244	0 - C	No	Observer	
V548 Cyg	1669	7469.408	-0.022	11	MM	
V836 Cyg	4002	7468.4515	+0.0056	16	EJ (pe)	
V1143 Cyg	680	7408.4784	-0.0044	29	EJ (pe)	
V1425 Cyg	5626.5	7447.5035	+0.0040	46	EJ (pe)	
DM Del	3509	7465.3185	-0.0402	49	EJ (pe)	
AI Dra	3334	7288.4796	+0.0047	33	EJ (pe)	
	3504	7492.285	+0.012	11	TY	
Z Her	8591	7388.494	-0.052	11	KG	
68u Her	20249	7361.277	-0.001	52	BS	*
	20249.5	7362.296:	-0.008:	26	BS	*
	20258	7379.791:	+0.054:	20	DH	*
SW Lac	6713.5	7428.4963	-0.0011	12	EJ (pe)	
0.1.2	6841	7469.404	+0.005	11	MM	
	6844	7470.354	-0.007	6	MM	
VX Lac	2094	7508.471:	+0.014:	9	C2	
AR Lac	2990	7523,403	-0.053	17	BS	*
	2991.5	7526.364	-0.067	10	BS	*
RR Lyn	1445	7524.4924	-0.0090	50	EJ (pe)	
Beta Lyr	3028.5	7392.87	+35.37	182	6	*
,-	3028	7386.44	+35.40	175	6	٠
U Oph	1751	7353.421	+0.002	15	BS	*
U Opr	1785.5	7411.302	+0.014	14	BS	
	1804	7442.316	-0.003	7	BS	
V451 Oph	1185	7437.3303	-0.0011	33	EJ (pe)	
V1010 Oph	12764	7380.232	+0.020	7	DH	٠
· • • • • • • • •	12764.5	7380.589	+0.046	10	DH	+
UW Ori	139.5	7456.578	-0.009	10	IS	. *
U Peg	29304.5	7494.364	-0.087	5	ТҮ	
EE Peg	725	7469.359	+0.012	10	MM	
DM Per	2038	7479.5959	+0.0020	46	EJ (pe)	
	2046	7501.381	-0.035	4	WH	
IZ Per	784.5	7470.5664	-0.0005	50	EJ (pe)	

Star	Epoch	Helio JD 244	0 - C	No	Observer	
Beta Per	537	7181.271	+0.015	14	ТҮ	*
	595	7347.595	+0.036	6	IS	*
	611	7393.454	+0.017	12	IS	*
	619	7416.392	+0.018	8	IS	
	626	7436.475	+0.029	10	BS	*
	634	7459.414	+0.030	8	IS	
	635	7462.295	+0.043	9	P1	*
	642	7482.319	-0.004	7	BS	
	649	7502.401	+0.007	11	BS	*
	649	7502.404	+0.010	12	C1	
	649	7502.406	+0.012	11	TY	
	650	7505.300	+0.039	11	P 1	*
SZ Psc	2963	7492.280	-0.202	7	TY	
BV Tau	1240	7206.366	-0.010	12	KG	*
HU Tau	2880	7197.474	+0.010	7	ΤY	
	3021	7487.427	+0.024	6	BS	*
V781 Tau	10422	7469.5941	-0.0119	16	EJ (pe)	
W UMa	4354	7218.3869	-0.0054	15	EJ (pe)	
	4525	7275.4389	-0.0090	13	EJ (pe)	
	4561	7287.4506	-0.0092	15	TW (pe)	

Index of Unpublished BAA Observations of Variable Stars, 1906-89

Following discussion at meetings of the Pro-Am Liaison Committee, an index of unpublished visual observations has been set up on a microcomputer. The full index records the numbers of observations in the Section's files for each star in each year. The following table derived from the database summarizes the information.

Successive columns give:

- Star name, in constellation order. Supernovae and active galaxies are listed at the end.
- GCVS type.
- BAA programme (B = binocular, R = recurrent objects, T = telescopic) in which the observations were reported.
- First year of observation.
- Latest year of observation. Most stars with "1989" are still under observation.
- Approximate number of observations, including negative reports for variables below the limit of the observer's telescope. The figures were not immediately available for all stars in all years, but the totals include an allowance for this.

- An indication of the quality of coverage, as follows:
 - 1 = fairly even spread in all or most years, allowing a well-defined light curve to be drawn, except perhaps for very rapid changes in certain stars.
 - 2 = good coverage but with seasonal gaps.
 - 3 = well observed when bright, but many negative observations.
 - 4 = fragmentary data, with large gaps in coverage.

The index is complete up to the end of 1989, except for:

- Published observations, for example those of long-period variables for 1900-29 in BAA Memoirs, and early observations of SS Cyg and R Sct.
- Eclipsing binaries (a separate programme since 1972).
- JAS observations of naked-eye variables since 1959.
- Stars observed fewer than 100 times each. (An exception has been made for several novae, and a few recently added stars for which we may expect data to accumulate.)

All requests for access to historical VSS data should be addressed to the Director. At present most data are available as paper copies, but work is in progress to make them all available in machine-readable form.

Star	Туре	Programme	First year	Last year	No of estimates	Quality
R And	M	T ·	1930	1989	7500	1
W And	М	Т	1930	1989	5500	1
Z And	ZAND	Т	1987	1989	60	1
RS And	SRA	B	1970	1989	800	1
RW And	М	T	1977	1989	1600	1
RX And	UGZ	Т	1926	1989	11600	1
SU And	LC	В	1970	1989	500	1
TZ And	SRB	B	1970	1989	800	1.
VX And	SRA	Т	1988	1989	300	1
AQ And	SR	B	1968	1989	1300	1
BZ And	LB	B	1970	1989	600	1
DX And	UGSS	R	1989	1989	10	4
DZ And	?	Т	1974	1986	1300	. 1
EG And	ZAND	В	1987	1989	40	1
EU And	SR	Т	1988	1989	100	1
HP And	UG?	R	1988	1989	30	4
LS And	NA	R	1988	1989	30	4
OS And	N	Τ	1986	1988	500	1
R Aqr	М	Т	1987	1989	50	2
VY Aqr	UGSU	Т	1983	1989	900	3
R Aql	М	Т	1930	1989	8200	2
S Aqi	SRA	Т	1930	1972	3200	2
V Aql	SRB	B	1968	1989	1900	2
UU Aql	UGSS	T	1963	1989	2500	3

Star	Туре	Programme	First year	Last year	No of estimates	Quality
UW Aql	LC	т	1973	1989	1700	2
V356 Aql	N	Ť	1936	1937	60	2
V368 Aql	N	Ť	1936	1937	10	4
V450 Aql	SRB	B	1968	1989	1600	2
V528 Aql	N	Ť	1945	1948	40	2
V603 Aql	NA/E+X	Ť	1981	1989	200	2
V1293 Aql	SRB	B	1974	1989	1300	2
V1294 Aql	GCAS	B	1987	1989	90	2
NSV 12088 Aql	-	B	1974	1988	900	2
R Ari	М	Ť	1930	1974	3700	2
V Ari	SRB	B	1975	1989	600	2
SV Ari	N?	Ř	1989	1989	20	4
R Aur	M	Ť	1930	1974	3200	1
X Aur	M	Ť	1930	1974	4400	1
RW Aur	INT	Ť	1929	1981	600	4
SS Aur	UGSS	Ť	1920	1989	23400	3
SU Aur	INSB	Ť	1974	1981	1000	1
UU Aur	SRB	B	1967	1989	4400	1
UV Aur	M	T	1988	1989	30	1
AB Aur	INA	B	1971	1989	3200	1
AE Aur	INA	B	1968	1988	4400	1
CO Aur	CEP(B)	B	1974	1984	1600	1
NO Aur	LC	B	1974	1988	900	1
Psi ¹ Aur	LC	B	1970	1989	600	1
NSV 2537 Aur	?	B	1967	1988	6800	1
R Boo	M	Ť	1930	1974	4700	ī
S Boo	M	Ť	1930	1974	4100	1
U Boo	SRB	Ť	1930	1989	5600	1
V Boo	SRA	Ť	1930	1989	8900	1
W Boo	SRB?	B	1981	1989	500	i
RV Boo	SRB.	B	1974	1989	800	i
RW Boo	SRB	B	1974	1989	900	i
RX Boo	SRB	B	1968	1989	1900	1
UV Boo	CST?	B	1969	1989	1600	1
UZ Boo	UG	R	1988	1989	1000	4
Nova Boo 1962	N?	R	1989	1989	10	4
R Cam	M	T	1930	1969	3400	1
U Cam	SRB	B	1950		1300	1
V Cam	SKD M	Б Т		1989		1
		-	1930	1989	4400	-
X Cam	M	Т	1930	1989	8200	1
Z Cam	UGZ	Т	1926	1989	15200	1
RY Cam	SRB	В	1971	1989	1400	1
ST Cam	SRB	B	1972	1989	2100	1
TW Cam	RVB	Т	1974	1975	400	1
UV Cam	SRB	B	1971	1989	1600	1
UX Cam	LB	B	1972	1979	100	1
VZ Cam	SR	B	1968	1988	1700	1
XX Cam	RCB?	Т	1972	1989	4900	1
ZZ Cam	LB	B	1971	1989	1600	1
AF Cam	UG	Т	1969	1974	500	3

Star	Туре	Programme	First year	Last year	No of estimates	Quality
+61 668 Cam	?	В	1972	1988	1200	1
R Cnc	М	Т	1963	1971	200	2
X Cnc	SRB	В	1967	1989	2300	2
RS Cnc	SRC?	В	1971	1989	2600	2
RT Cnc	SRB	B	1972	1989	600	2
SU Cnc	М	Т	1985	1989	90	4
EG Cnc	NL	R	1988	1989	20	4
U CVn	М	Т	1985	1989	200	1
V CVn	SRA	В	1968	1989	3700	1
Y CVn	SRB	B	1968	1989	3700	1
RT CVn	М	Т	1985	1989	50	4
TU CVn	SRB	В	1968	1989	3500	1
TX CVn	ZAND	Т	1987	1989	60	1
W CMa	LB	В	1968	1989	300	2
R Cas	М	Т	1930	1974	4800	1
S Cas	М	Т	1930	1989	5900	1
T Cas	М	Т	1930	1989	8500	1
W Cas	М	Т	1930	1974	4800	1
UV Cas	RCB	Т	1974	1989	3300	1
WZ Cas	SRB	В	1968	1989	2900	1
HT Cas	UGSS+E		1969	1989	300	4
V377 Cas	DSCT?	В	1970	1988	2200	1
V391 Cas	LB	В	1972	1989	1700	1
V393 Cas	SRA	В	1972	1989	2000	1
V465 Cas	SRB	B	1969	1989	4400	1
V630 Cas	UG?	R	1988	1989	20	4
Gamma Cas	GCAS	Т	1970	1989	12000	1
Rho Cas	SRD	Т	1964	1989	9600	1
NSV 21 Cas	?	В	1971	1988	700	1
NSV 436 Cas	LB	В	1974	1988	1500	1
NSV 650 Cas	IA?	В	1972	1988	1800	1
+59 2816 Cas	?	В	1983	1988	200	1
S Cep	М	Т	1930	1974	4200	1
T Cep	М	Т	1930	1974	7400	1
W Cep	SRC	В	1967	1989	3100	1
RU Cep	SRD	В	1968	1989	1900	1
RW Cep	SRD	В	1970	1989	3100	1
RX Cep	SRD?	В	1968	1989	2600	1
SS Cep	SRB	B	1967	1989	2600	1
AR Cep	SRB	B	1968	1989	4200	1
DM Cep	LB	B	1981	1989	1300	1
FZ Cep	SR	B	1970	1989	500	1
OV Cep	SR	B	1968	1985	700	1
Mu Cep	SRC	B	1967	1989	2800	1
NSV 13656 Cep	?	B	1967	1988	2500	1
NSV 13729 Cep	?	B	1967	1988	1200	1
NSV 14680 Cep	-	B	1972	1988	1300	1
WX Cet	UG	Ř	1988	1989	30	4
Omicron Cet	M	Ť	1930	1989	7400	2
NSV 422 Cet	L?	B	1969	1984	200	2
R Com	M	Ť	1985	1989	200	2
		-	••			-

Star	Type Pro	gramme	First year	Last year	No of estimates	Quality
AL Com	UGSS	R	1988	1989	30	4
R CrB	RCB	Т	1921	1989	31800	1
S CrB	Μ	Т	1930	1989	7400	1
T CrB	NR	Т	1946	1989	8000	1
V CrB	Μ	Т	1977	1989	1700	1
W CrB	М	Т	1930	1989	5600	1
RR CrB	SRB	В	1968	1989	1800	1
SW CrB	SRB	B	1968	1989	1800	1
R Cyg	М	Т	1930	1989	7100	1
S Cyg	М	Т	1930	1989	4600	1
Т Су	LB?	В	1968	1988	2000	1
U Cyg	М	Т	1930	1974	5300	1
V Cyg	М	Т	1930	1989	6300	1
W Cyg	SRB	Ť	1930	1989	16600	1
RS Cyg	SRA	В	1968	197 9	200	1
RU Cyg	SRA	В	1968	1989	800	1
RV Cyg	SRB	В	1969	1989	1500	1
SS Cyg	UGSS	Т	1906	1989	39000	1
TT Cyg	SRB	В	1968	1989	1600	1
AF Cyg	SRB	В	1968	1989	5200	1
BC Cyg	SRC	Т	1972	1989	2700	1
BF Cyg	ZAND	Т	1987	1989	40	4
BI Cyg	LC	Т	1972	1989	2900	1
CH Cyg	ZAND+SR	В	1968	1989	8400	1
CI Cyg	EA/G+ZANI	ЭТ	1973	1989	3900	1
DF Cyg	RVB	Т	1974	1975	200	1
EY Cyg	UGSS	Т	1931	1989	400	4
V460 Cyg	SRB	В	1971	1989	1800	1
V778 Cyg	LB	Т	1988	1989	200	1
V973 Cyg	SRB	В	1969	1989	2000	1
V1016 Cyg	NC+M	Т	1988	1989	20	1
V1251 Cyg	UG?	R	1988	1989	10	4
V1329 Cyg	E+NC	Т	1988	1989	10	4
V1351 Cyg	LB	B	1974	1988	200	1
V1500 Cyg	NA	Ť	1975	1979	1300	1
V1624 Cyg	SXARI	B	1969	1988	2100	1
V1668 Cyg	NA	Т	1978	1980	200	1
V1819 Cyg	N	Ť	1986	1989	500	1
Chi Cyg	M	Ť	1930	1989	10400	1
P Cyg	SDOR	B	1967	1989	6000	1
NSV 12247 Cyg	LB	B	1969	1988	400	. 1
NSV 12439 Cyg	SR	B	1969	1988	1000	1
NSV 13784 Cyg	?	В	1979	1988	400	1
NSV 13857 Cyg	LB	B	1970	1988	700	1
+47 2801 Cyg	$\frac{1}{2}$	B	1974	1988	900	1
S Del	M	T	1964	1974	600	1
U Del	SRB	B	1967	1989	5000	1
EU Del	SRB	B	1967	1989	5100	1
HR Del	NB	T	1967	1989	6700	1
NSV 13150 Del	?	B	1968	1988	1500	1
R Dra	M	Ť	1930	1974	5000	1

•

Star	Туре	Programme	First year	Last year	No of estimates	Quality
T Dra	М	Т	1930	1989	3700	1
RY Dra	SRB?	В	1967	1989	6300	1
TX Dra	SRB	B	1972	1989	2900	1
UW Dra	LB	В	1971	1989	1200	1
UX Dra	SRA?	В	1967	1989	2100	1
VW Dra	SRD?	В	1972	1989	1200	1
AB Dra	UGZ	Т	1969	1989	4500	<u> </u>
AG Dra	ZAND	T A	1987	1989	200	1
AH Dra	SRB	B	1972	1989	1800	1
AT Dra	LB	B	1972	1989	1700	1
DO Dra	UG	R	1988	1989	100	3
69 Dra	?	В	1974	1988	600	1
R Gem	M	Т	1930	1974	4700	2
U Gem	UGSS+E	Т	1932	1989	15200	2
SS Gem	RVA	Т	1974	1975	500	2
SU Gem	RVB	Т	1974	1975	200	2
SW Gem	SRA	Т	1966	1972	200	2
TU Gem	SRB	B	1968	1989	1100	2
TV Gem	SRC	В	1967	1989	2600	2
WY Gem	LC+E?	В	1968	1989	2100	2
BM Gem	SRB	Т	1988	1989	200	2
BN Gem	GCAS	В	1972	1989	1700	2
BQ Gem	SRB	В	1968	1989	900	2
BU Gem	LC	В	1967	1989	2900	2
DW Gem	LB	B	1969	1989	400	2
IR Gem	UGSU	Т	1981	1989	2200	3
IS Gem	SRC	В	1969	1989	1100	2
NQ Gem	SR+ZAN		1971	1989	100	4
+23 1192 Gem	?	В	1985	1988	200	2
S Her	М	Т	1930	1971	3300	1
T Her	М	Т	1930	1974	4300	1
U Her	M	T .	1930	1974	4100	1
X Her	SRB	В	1967	1989	4000	1
RU Her	М	Т	1977	1989	1400	1
SS Her	М	Т	1963	1989	2600	1
ST Her	SRB	В	1971	1989	700	1
SX Her	SRD	B	1972	1989	500	1
UW Her	SRB	B	1974	1989	1400	1
YY Her	ZAND	T	1987	1989	40	1
AC Her AH Her	RVA	T T	1974	1989	5000	1
	UGZ	T T	1970	1989	4100	1
DQ Her IQ Her	NB SRB	B	1934 1971	1959 1989	. 1500 800	1
OP Her	SRB	B	1971	1989	3100	1
V443 Her	ZAND	В Т	1908	1989	40	1
V445 Her	NA	T	1987	1989	40	1
V533 Her	NA	T	1960	1961	1200	1
V566 Her	SRB	B	1905	1989	1300	1
V827 Her	NA	Б Т	1971	1989	200	1
g Her	SRB	B	1967	1988	4300	1
R Hya	M	T	1930	1989	3000	2

•

.

Star	Type	Programme	First year	Last year	No of estimates	Quality
U Hya	SRB	В	1968	1989	600	2
RW Hya	ZAND	Т	1987	1988	10	4
SU Lac	М	Т	1974	1989	1400	3
SX Lac	SRD	В	1971	1989	600	1
CP Lac	NA	Т	1936	1944	500	1
DK Lac	NA	T	1950	1952	80	1
NSV 14213 Lac	L	В	1968	1988	1600	1
NSV 14260 Lac	~ ?	В	1969	1988	1700	1
R Leo	M	T	1930	1974	6900	2
X Leo	UGSS	Ť	1920	1989	7900	3
RS Leo	M	Ť	1985	1989	100	2
RY Leo	SRB	Ť	1985	1989	300	2
RZ Leo	UG?	R	1987	1989	80	3
TU Leo	UG?	R	1988	1989	20	4
R LMi	M	T	1975	1977	200	2
U LMi	SRA	Ť	1985	1989	200	2
W LMi	SRD	Ť	1985	1989	40	2
RX Lep	SRB	B	1967	1989	900	2
SS Lep	ZAND	B	1987	1989	20	2
R Lyn	M	Ť	1930	1974	4000	1
W Lyn	M	Ť	1985	1989	60	1
X Lyn	M	Ť	1985	1989	200	1
Y Lyn	SRC	B	1968	1989	2300	1
SV Lyn	SRB	В	1971	1989	900	1
NSV 3597 Lyn	-	В	1968	1988	500	1
R Lyr	SRB	В	1967	1989	3600	1
W Lyr	М	Т	1930	1974	5000	1
XY Lyr	LC	В	1968	1989	2900	1
AY Lyr	UGSU	Т	1931	1989	5300	3
Delta ² Lyr	SRC?	В	1968	1988	2200	- 1
S Mon	IA?	В	1967	1988	900	2
U Mon	RVB	Т	1964	1989	3800	2
RV Mon	SRB	В	1974	1989	800	2
SX Mon	SR	В	1974	1989	600	2
BX Mon	*	Т	1987	1989	10	4
V616 Mon	XND+ELI		1987	1989	80	3
X Oph	M	B	1968	1989	1900	2
RS Oph	NR	T	1958	1989	3900	2
RY Oph	M	T	1930	1971	2300	2 2
V2048 Oph	GCAS+U	/? В Т	1970	1989 1988	4200 10	4
Hen 1341 Oph	ZAND?	T T	1988 1926	1988	500	4
T Ori	INSA M	T	1928	1977	8000	2
U Ori W Ori	SRB	B	1950	1989	1400	2
BL Ori	LB	B	1968	1989	1500	2
	SR	B	1969	1989	1600	2
BQ Ori CK Ori	SR?	B	1969	1989	1300	2
	UGZ	Б Т	1963	1989	3000	3
CN Ori CT Ori	RV?	T	1903	1969	200	2
CI On CZ Ori	UGSS	T	1974	1975	4400	3
DY Ori	RV?	T	1930	1985	200	2
DION		1	17/4	1915	200	~

Star	Туре	Programme	First year	Last year	No of estimates	Quality
GW Ori	INST	Т	1974	1977	100	2
IU Ori	INSB	Ť	1968	1977	300	2
KS Ori	INA	Ť	1968	1977	300	2
KX Ori	INA?	Ť	1974	1977	200	2
LP Ori	INSA?	Ť	1968	1977	400	2
MX Ori	INB	Ť	1968	1977	300	2
NU Ori	INSA	T	1968	1979	600	2
NV Ori	INSB	T	1968	1977	300	2
V359 Ori	SXARI	T	1974	1977	200	2
V359 On V361 Ori	INSA	T	1968	1977	400	2
V301 On V372 Ori	INA	T	1968	1977	400	2
V 566 Ori	INSA	T	1908	1977	100	2
NSV 2271 Ori	?	Ť	1974	1977	200	2
NSV 2386 Ori	2	T	1974	1977	400	2
NSV 2917 Ori	LC?	B	1968	1977	1200	2
	M	Б Т	1930	1988	3500	1
R Peg	M M	T	1930	1974	2800	1
X Peg	M UGSS+ZZ		1930	1972	2800 8600	1
RU Peg	NC		1927	1989		
AG Peg	UG	B R	1970		3600 40	1 4
EF Peg	LB	R B	1988	1989	40 1000	4
GO Peg		в Т	1971	1989 1974		
R Per S Per	M SRC	T	1930		3300	1
				1989	9100	-
X Per RS Per	GCAS+XP SRC	Б	1967 1972	1989 1989	5000 3200	1
SU Per	SRC	B	1972	1989	3200 1000	-
TZ Per	UGZ	В Т	1970	1989	8200	1
UV Per	UGZ	T T	1930	1989	8200 7500	3
UW Per	UG3U UG?	R	1928	1989	100	3
AD Per	SRC	B	1988	1989	100	1
AD Per	ZAND	Б Т	1970	1989	1000	1
BU Per	SRC	T	1972	1989	3100	1
GK Per	NA+XP	Ť	1966	1989	2800	1
KK Per	LC	B	1900	1989	2800 700	1
PR Per		B	1970	1989	900	1
NSV 895 Per	UG?	R	1988	1989	20	4
T Psc	SRB	T	1926	1960	1700	2
Z Psc	SRB	R	1920	1989	900	2
TV Psc	SRD	B	1967	1989	1700	2
TX Psc	LB	B	1967	1989	1500	2
R Sge	RVB	В Т	1907	1989	200	1
V Sge	E+NL	T	1926	1989	400	4
SV Sge	RCB	T	1920	1989	200	1
WZ Sge	UGSU+E+	-	1973	1989	200	3
HM Sge	NC+M	T	1973	1989	2900	1
HS Sge	NC+M	T	1988	1989	20 70	1
QW Sge	ZAND	T	1977	1979	10	4
V1017 Sgr	ZAND	R	1988	1989		4
U Sco	ZAND NR	R	1987		100	4
V977 Sco				1989	100	
-	N	T T	1989	1989	10	4
R Sct	RVA	T	1921	1989	16500	1

Star	Туре	Programme	First year	Last year	No of estimates	Quality
S Sct	SRB	В	1968	19&9	1200	1
FR Sct	ZAND	Т	1988	1989	10	4
V368 Sct	NA	Т	1970	1973	70	1
V373 Sct	NA	Т	1975	1975	100	1
V443 Sct	Ν	Т	1989	1989	60	1
Nova Sct 1981	N?	R	1987	1989	70	3
R Ser	М	Т	1930	1989	5800	2
CT Ser	NA	Т	1948	1959	100	2
FG Ser	ZAND	Т	1988	1989	10	4
FH Ser	NA	Т	1970	1974	300	2
AS 289 Ser	ZAND?	Т	1988	1989	20	2
Z Sex	LB	Т	1974	1975	200	2
T Tau	INT	Т	1931	1981	1600	4
V Tau	М	Т	1930	1972	2500	2
Y Tau	SRB	В	1968	1989	1600	2
RV Tau	RVB	Т	1950	1989	4400	2
RY Tau	INT	Т	1974	1977	200	2
SU Tau	RCB	Т	1962	1989	4500	2
TT Tau	SRB	В	1971	19 89	900	2
BU Tau	GCAS	В	1967	1989	3100	2
CE Tau	SRC	В	. 1968	1989	1300	2
HW Tau	UGSS	R	1988	1989	20	4
NSV 1280 Tau	IS?	B	1691	1988	1100	2
NSV 1702 Tau	?	13	19677	1988	800	2
R Tri	M	T	1963	1974	1100	2
W Tri	SRC	B	1968	1989	1000	2
R UMa	M	T	1930	1974	4900	1
S UMa	М	T	1930	1974	8700	1
T UMa	M	T	1930	1989	8800	1
V UMa	SRB	Т	1934	1972	1700	1
Z UMa	SRB	B	1968	1989	4100	1
RY UMa	SRB	B B	1967	1989	3900	1
ST UMa	SRB	В Т	1968	1989	2400	1
SU UMa	UGSU	-	1926	1989	9600	3
SW UMa	UGSU SRB	T B	1963	1989	4100	3 1
TV UMa VW UMa	SRB	B	1974	1989	800 3000	-
VY UMa		B	1967	1989		1
BC UMa	LB UG	R	1968	1989	3200 60	1 3
BC UMa BZ UMa	UG UG	R	1987	1989	100	
		R T	1987	1989		3
CH UMa	UGSS	R	1972	1989	4300	1 4
CY UMa	UG		1987	1989	10	•
R UMi	SRB	T	1921	1972	5300	1
S UMi	M	Т	1930	1974	3900	1
V UMi	SRB	B	1968	1989	1800	1
RR UMi	SRB	B	1981	1988	800	1
S Vir	M	Ţ	1930	1974	3100	2
RS Vir	M	Т	1975	1977	100	2
RW Vir	LB	В	1968	1989	400	2
RX Vir	SRD?	B	1968	1989	300	2
SS Vir	SRA	В	1969	1989	600	2

Star	Туре	Programme	First year	Last year	No of estimates	Quality
SW Vir	SRB	В	1974	1989	400	2
BK Vir	SRB	B	1974	1989	400	2
HV Vir	N?	R	1988	1989	10	4
R Vul	M	Т	1930	1972	2800	1
V Vul	RVA	Т	1974	1989	3000	1
LV Vul	NA	Т	1968	1973	1000	1
NQ Vul	NB	Т	1976	1979	6 00	1
PU Vul	NC	Т	1979	1989	2600	1
PW Vul	Ν	Т	1984	1989	600	1
QU Vul	NA	T .	1984	1989	400	1
QV Vul	NA	Т	1987	1989	300	1
Mark 421	BLLAC	Т	1981	1989	500	2
NGC 4151	GAL	Т	1981	1989	900	2
SN 1974 (N4414)	SN	T	1974	1974	20	1
SN 1979 (M100)	SN	Т	1979	1979	10	4
SN 1980K	SN	Т	1980	1980	100	1
SN 1989B (M66)	SN	Т	1989	1989	80	1
3C 273	QSO	Т	1981	1989	500	2

UV Aurigae

Members are urged to send any observations of this star to Melvyn Taylor as soon as possible. Recent coverage indicates that the star has exceeded its normal range and that covered by the sequence on chart 074.01. We hope to make an extended sequence available in the near future.

SECTION OFFICERS

Director	J.E. Isles, PO Box 6322, Limassol, Cyprus Tel. & Telefax: Limassol (010 357 5) 222321 Telex: 3379 (CAPINTL CY)
	Eclipsing binary charts are available from, and bulky material should be sent to:
	Mrs Elizabeth Isles, 20 Berkeley Square, London W1X 6DT
	NB: for routine enquiries contact M.D. Taylor
Assistant Director & Circulars Editor	S.R. Dunlop, 140 Stocks Lane, East Wittering, Chichester, West Sussex PO20 8NT Tel: Bracklesham Bay (0243) 670354 Telex:9312134138 (SD G) Email:Telecom Gold10087:SQQ1308 Compuserve100015,1610 JANET:MAFD5 @ UK.AC.SUSSEX.CLUSTER
& Circulars Editor Secretary	M.D. Taylor, 17 Cross Lane, Wakefield, West Yorkshire WF2 8DA Tel: Wakefield (0924) 374651
Chart Secretary	J. Toone, 2 Hilton Crescent, Boothstown, Worsley, Manchester M28 4FY Tel: 061 702 8619
Nova/Supernova Secretary	G.M Hurst, 16 Westminster Close, Kempshott Rise, Basingstoke, Hants. RG22 4PP Tel:Basingstoke (0256) 471074 Telex:9312111261 (TA G) Email:Telecom Gold10074:MIK2885 JANET:GUYH @ UK.AC.SUSSEX.CLUSTER
Prof./Am. Liason Comm. Secretary	R.D. Pickard, 28 Appletons, Hadlow, Kent TN11 0DT Tel:Tonbridge (0732) 850663 Email:Telecom Gold10074:MIK3229
Computer Secretary	D. McAdam, 33 Wrekin View, Madeley, Telford, Shropshire TF7 5HZ Tel:Telford (0952) 432048 Email:Telecom Gold10087:YQQ587

Telephone Alert Numbers

The following numbers may be called at any time up to 23:00 UT (or BST when in operation) to report variable-star activity, or at any time during the night for possible novae only:

Guy Hurst Graham Keitch Denis Buczynski Martin Mobberley 0256 471074 0934 862924 0524 68530 0245 252975 weekdays 0284 828431 weekends

For subcription rates and charges for charts and other publications see inside back cover.

NEW MEMBERS

R. Fleet	60 Blacklands Drive, Hayes End, Mddx. UB4 8EX
B. Kelly	449 Brook Street, Broughty Ferry, Dundee DD5 2DX
R. Mitchell	22 King Street, Bridport, Dorset DT6 3QD
A.C. Renwick	'Remore', Low Causeway, Culross, Fife KY128HL
S.G. Ridley	63 Albert Street, Chilton, Ferryhill, Co. Durham DL1 0QA
Dr S. Sakuma	2-21-9, Kami-Aso, Asao-ku, Kawasaki 215 JAPAN

CHANGE OF ADDRESS

G.S. Hawkins	23 St Katherines Avenue, Bridport, Dorset DT6 3DE
M.C. Porter	23 Driftway Road, Loddon Heights, Hook, Hants. RG27 9SB
P. Wils	Schorsemolenstraat 9211, B-2640 Sint-Katelijne-Waver, BELGIUM

ADDRESS CORRECTION

E.J. Handford	109 Winchelsea	Road, Rye, J	East Sussex	TN31 7EL
---------------	----------------	--------------	-------------	----------

WELCOME BACK

Geoff Chaplin	19 Longdown Road, Lower Bourne, Farnham, Surrey GU10 3JU
Tony Markham	20 Hillside Drive, Leek, Staffs. ST13 8JQ

CIRCULARS

Charges:	U.K. & Eire - £5 for Circulars and light-curves (4 issues) Other countries - £6
Payments (mad	e out to the BAA) and material for inclusion should be sent to Storm Dunlop.
CHARTS:	Eclipsing - Order from Mrs E. Isles All others - John Toone
Charges:	Telescopic - SAE plus 30p per star Eclipsing - SAE plus 6p per star (1 sheet) Binocular - SAE plus 8p per star (1 sheet)
	NB: SAEs should preferably be A4 size

BOOKLETS

Direct sale prices apply to material collected from the Office at Burlington House or purchases at BAA Meetings.

Binocular Variable Star Charts: Vol.1

£1.25 (U.K) or £1.50 (Overseas) each, including postage (Direct sale price £1.00)

Eclipsing Binary Programme Handbook: 1988

£1.25 (U.K.) or £1.50 (Overseas) each, including postage (Direct sale price £1.00)

Available from Storm Dunlop or BAA Office at Burlington House