British Astronomical Association

VARIABLE STAR SECTION CIRCULAR

No 154, December 2012

Contents

BAA VSS On-line Data Base Poster at CAPAS, Rodez inside front cover
From the Director - R. Pickard ... 1
EuroVS 2013-2nd European Variable Star Observers’ Meeting - A. Oksanen .. 1
Monitoring required of Young Stella Objects - D. Sergison 2
Delta Orionis Campaign - L.Corp ... 3
The top 100 ”Most Observed” stars in 2011 - R. Pickard 4
Stars not observed in 2011 - R. Pickard .. 7
Chart News - J. Toone ... 8
Eclipsing Binary News - D. Loughney .. 11
Observing Bright RR Lyrae Stars - D. Loughney & J.-F. le Borgne 13
RY Camelopardalis Light Curves - M. Taylor 17
The Transformation Coefficient for the Canon 550D DSLR - D. Loughney .. 18
CAPAS 2012, Rodez (Scrap Book) - J. Simpson 20
Binocular Priority List - M. Taylor ... 23
Eclipsing Binary Predictions - D. Loughney 24
From the Director, continued – T Cas Light Curve - R. Pickard 28
Charges for Section Publications ... inside back cover
Guidelines for Contributing to the Circular .. inside back cover

ISSN 0267-9272

Office: Burlington House, Piccadilly, London, W1J 0DU
BAA VSS ON-LINE DATA BASE POSTERS AT THE CAPAS MEETING, RODEZ

Bi-lingual Presentation of VSS On-line Data base by Helen Thomas.
FROM THE DIRECTOR
ROGER PICKARD

Joint TA/BAAVSS meeting St. Mary’s Church Hall, Basingstoke, October 13th 2012
Guy Hurst kindly agreed that this year ‘The Astronomer’ magazine meeting should become a joint meeting with the Variable Star Section, in honour of the centenary (28th August) of the birth of George Alcock. This collaboration was a great success. Guy Hurst spoke of the “Lifetime achievements of George Alcock”, and Denis Buczynski of “Some reminiscences” and other themes were conducive with George Alcock’s interests. For those of you unable to attend, the contributions from professional VS speakers, Professors Boris Gaensicke and Nye Evans have already been uploaded to the web page under “Past meetings” <http://www.britastro.org/vss/tabavss Meeting.htm>. In addition, my own humble presentation, written in collaboration with Andy Wilson, has also been added.

Monitoring required of Young Stella Objects
This is another temporary programme which Darryl Sergison describes later in this Circular. These are reasonably bright objects for a change (well approximately in the range of 9.5-13.5 magnitude), and are therefore suitable for both visual and CCD observers. I hope that some of you will undertake monitoring of these interesting objects. The Director managed to observe two of these stars on 5th November 2012 when DN Tauri was at magnitude 12.32 V and DR Tauri was at 12.2 V. Also note that in his article Darryl Sergison is offering the loan of a V filter for the duration of this programme. Please contact him if you would like to take advantage of this.

Most/least observed stars for 2011
If you are an observer of one or more of the most observed stars in the list then please consider observing it/them a little less frequently and instead take on one or more of the less well observed stars.

Light curves
I am sure most of you will be aware that we are now starting to produce more static light curves on the web page (just click on the side bar link “Light Curves”). So far, this has been the work of Tony Markham but Nigel Foster has also submitted a number of examples which have the added benefit of including the date as well as the JD. Hopefully, by the time you read this some of his light curves will also be on the website.

Missing Observations
As an example, I show the light curve for T Cas(p.28) from June 2003 to late 2007 where you will notice an obvious gap from 2453400 which equates to the whole of 2005! If you observed this star during this period could you please advise the Director. Furthermore, perhaps you could check to see if any more of your observations are also missing from 2005 (or any other period for that matter).

EUROVS 2013 - THE 2ND EUROPEAN VARIABLE STAR OBSERVERS’ MEETING
ARTO OKSANEN

Originally planned for 7 - 9 September 2012 (VSSC No 153), EuroVS 2013 – the 2nd European Variable Star Observers’ Meeting will now take place on 26 - 28 April 2013 in Helsinki,
MONITORING REQUIRED OF YOUNG STELLA OBJECTS.
DARRYL SERGISON

Autumn 2013 will see the launch of an exciting new study into the nature of pre-main-sequence low mass stars, using time series optical spectroscopy and UV-Visual-IR photometry by Darryl Sergison and Tim Naylor of Exeter University. Professional telescopes will obtain data from six nearby T-Tauri stars (in the Taurus/Auriga star forming region) with unprecedented time and spectral resolution. The aim is to build the clearest picture yet of the environment around young solar-type stars and characterise their various disc, accretion and outflow structures.

This study offers a fantastic opportunity for professional-amateur collaboration as the objects (with V magnitudes of 10 - 13) are well within the reach of photometry by small telescopes. Amateur observations are uniquely capable in the study of chaotically variable young stars, offering crucial datapoints in the lightcurve between observations made by professional telescopes.

We would be very keen to recruit(!) observers who are interested in being part of this study and able to contribute visual or (V and R band) filtered CCD photometry. All contributing observers will be acknowledged in the published papers, significant contributors may also be co-authors. I do have one spare 1.25" V band filter that I could lend to any interested observer who may wish to borrow it for the duration of this programme.

In preparation for the main data collection next autumn, we would like to start monitoring targets immediately. The first 3 targets that we will be studying are RY Tau, DN Tau and DR Tau. Finder charts may be found at <www.aavso.org/vsp>. Data can be submitted either directly to ‘Darryl Sergison’ <darryl@astro.ex.ac.uk>, or to the BAA VSS database in the usual way or to the AAVSO. CCD observers should ideally take a minimum of 3 images and also the occasional time-series could potentially be REALLY useful to characterise accretion infall.

If you would like more information or are interested in contributing to this study, please contact me by email at darryl@astro.ex.ac.uk. Many thanks, Darryl Sergison
DELTA ORIONIS (MINTAKA) CAMPAIGN
LAURENT CORP

Following the recent pro-am conference on stellar astrophysics (CAPAS 2012) held at Onet le Château, Rodez, France on 28th September - 1st October this year, I was put in contact with Yaël Nazé (High Energy Astrophysics Group, University of Liège, Belgium) and Anthony Moffat (University of Montreal, Canada). With their help, I have put together a webpage detailing the circumstances of the eclipse campaign and guidance for participants, which can be found at: http://www.astrosurf.com/lcorp/delta_ori.html

The campaign begins on 2012 December 17 and ends on 2013 January 7. The system will be observed by various satellites including; the CHANDRA X-ray observatory for which two periods of 6 days have been reserved during the second half of December by a professional team led by M. Corcoran, NASA; and the MOST satellite with its 0.15-m instrument which will be collecting continuous high-precision optical photometry from mid-December.

The contribution of amateurs
A call to the astronomical community has been made by Tony Moffat (Emeritus Professor, University of Montreal) for simultaneous complementary ground-based optical observations. Both multi-band photometry, and especially spectroscopy will be most welcome. N.B. You have to take into account the following constraints in planning your observations and submitting the results:

Photometry
Here the objective is to obtain 100 datapoints or more in each of B, V and Rc filters, preferably to a precision of 0.003 mag. The format for sending in the results is as follows:
Date, JD, Magnitude Delta Ori, Magnitude REF1, Magnitude REF2, ... Magnitude REFx

Spectroscopy
Frequently repeated high-resolution optical spectra are needed, especially including H-alpha (6562Å) and HeI (6678Å). Also, observations of a telluric standard (e.g. a broad line A-type star of similar magnitude) are needed for the H-alpha and HeI region. The spectra required are high signal-to-noise (S/N > ~200) with a spectral resolving power of R > ~10000, hopefully attainable in reasonably short times (< 30 min) and covering a large part of the optical spectrum from about 4000 - 7000Å.

Sending the data
The data should be sent to Noel Richardson: richardson@robaseastro.umontreal.ca
Each observer will be cited if he or she provides useful data.

References:
Tomographic Separation of Composite Spectra. VIII. The Physical Properties of the Massive Compact Binary in the Triple Star System HD 36486 (delta Orionis A)
http://iopscience.iop.org/0004-637X/565/2/1216/fulltext/54306.text.html

Where do X-rays come from in hot massive stars? The case of delta Orionis. Call for supplementary ground-based observations.
http://www.spektroskopieforum.vdsastro.de/download.php?id=4835&sid...

Good observations ... laucorp@wanadoo.fr

Thanks to Professor Tony Moffat and to Dr Ir Yaël Nazé for information provided.
THE TOP 100 “MOST OBSERVED” STARS IN 2011
ROGER PICKARD

Actually, there are 102 as the last 3 tied with 62 observations each. Note also, that not all these are necessarily Programme stars.

<table>
<thead>
<tr>
<th>Star</th>
<th>Observations</th>
<th>Star</th>
<th>Observations</th>
<th>Star</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z Cam</td>
<td>370</td>
<td>V393 Cas</td>
<td>119</td>
<td>VCam</td>
<td>73</td>
</tr>
<tr>
<td>SS Cyg</td>
<td>275</td>
<td>GK Per</td>
<td>119</td>
<td>U Sco</td>
<td>72</td>
</tr>
<tr>
<td>CH Cyg</td>
<td>266</td>
<td>V391 Cas</td>
<td>118</td>
<td>USNO1425.0982 Cyg</td>
<td>71</td>
</tr>
<tr>
<td>Z UMi</td>
<td>227</td>
<td>P Cyg</td>
<td>115</td>
<td>V542 Cyg</td>
<td>70</td>
</tr>
<tr>
<td>SS Aur</td>
<td>223</td>
<td>RX Boo</td>
<td>113</td>
<td>RY Dra</td>
<td>70</td>
</tr>
<tr>
<td>Z UMa</td>
<td>216</td>
<td>chi Cyg</td>
<td>112</td>
<td>ST UMa</td>
<td>70</td>
</tr>
<tr>
<td>AB Dra</td>
<td>204</td>
<td>AG Peg</td>
<td>110</td>
<td>mu Cep</td>
<td>69</td>
</tr>
<tr>
<td>AY Lyr</td>
<td>204</td>
<td>VCVn</td>
<td>108</td>
<td>Mark 421 UMa</td>
<td>69</td>
</tr>
<tr>
<td>RU Peg</td>
<td>202</td>
<td>V377 Cas</td>
<td>105</td>
<td>TX CVn</td>
<td>68</td>
</tr>
<tr>
<td>R CrB</td>
<td>183</td>
<td>W Cyg</td>
<td>104</td>
<td>T Cyg</td>
<td>68</td>
</tr>
<tr>
<td>SU UMa</td>
<td>179</td>
<td>CH UMa</td>
<td>98</td>
<td>DV Dra</td>
<td>68</td>
</tr>
<tr>
<td>rho Cas</td>
<td>176</td>
<td>BU Gem</td>
<td>96</td>
<td>F130 Her</td>
<td>68</td>
</tr>
<tr>
<td>V465 Cas</td>
<td>172</td>
<td>T Cep</td>
<td>93</td>
<td>X Oph</td>
<td>68</td>
</tr>
<tr>
<td>U Gem</td>
<td>171</td>
<td>U Mon</td>
<td>93</td>
<td>DX And</td>
<td>67</td>
</tr>
<tr>
<td>RY UMa</td>
<td>168</td>
<td>TV Gem</td>
<td>92</td>
<td>UV Boo</td>
<td>67</td>
</tr>
<tr>
<td>R Sct</td>
<td>167</td>
<td>RS Oph</td>
<td>92</td>
<td>UW Per</td>
<td>67</td>
</tr>
<tr>
<td>EM Cyg</td>
<td>161</td>
<td>LS And</td>
<td>91</td>
<td>eps Aur</td>
<td>66</td>
</tr>
<tr>
<td>RX And</td>
<td>159</td>
<td>ER UMa</td>
<td>91</td>
<td>beta Lyr</td>
<td>66</td>
</tr>
<tr>
<td>T CrB</td>
<td>157</td>
<td>S10930 Lyr</td>
<td>90</td>
<td>UU Aur</td>
<td>65</td>
</tr>
<tr>
<td>gamma Cas</td>
<td>148</td>
<td>V UMi</td>
<td>90</td>
<td>RV Boo</td>
<td>65</td>
</tr>
<tr>
<td>CI Cyg</td>
<td>148</td>
<td>AG Dra</td>
<td>87</td>
<td>RW Boo</td>
<td>65</td>
</tr>
<tr>
<td>AF Cyg</td>
<td>147</td>
<td>HP And</td>
<td>86</td>
<td>UV Cas</td>
<td>65</td>
</tr>
<tr>
<td>AC Her</td>
<td>140</td>
<td>ST Cam</td>
<td>86</td>
<td>X Her</td>
<td>65</td>
</tr>
<tr>
<td>TZ Per</td>
<td>134</td>
<td>EY Cyg</td>
<td>86</td>
<td>UV Per</td>
<td>65</td>
</tr>
<tr>
<td>XX Cam</td>
<td>132</td>
<td>V482 Cyg</td>
<td>85</td>
<td>RW Cep</td>
<td>64</td>
</tr>
<tr>
<td>AB Aur</td>
<td>131</td>
<td>DM Lyr</td>
<td>85</td>
<td>EG Cnc</td>
<td>64</td>
</tr>
<tr>
<td>X Per</td>
<td>129</td>
<td>WY Gem</td>
<td>84</td>
<td>Y Lyn</td>
<td>64</td>
</tr>
<tr>
<td>EG And</td>
<td>128</td>
<td>F128 Cg</td>
<td>82</td>
<td>Y CVn</td>
<td>63</td>
</tr>
<tr>
<td>WZ Cas</td>
<td>127</td>
<td>SW UMa</td>
<td>81</td>
<td>TT Cyg</td>
<td>63</td>
</tr>
<tr>
<td>CSV171 Cas</td>
<td>125</td>
<td>U Ori</td>
<td>80</td>
<td>XY Lyr</td>
<td>63</td>
</tr>
<tr>
<td>AH Her</td>
<td>124</td>
<td>TX Dra</td>
<td>79</td>
<td>CN Ori</td>
<td>63</td>
</tr>
<tr>
<td>X Leo</td>
<td>124</td>
<td>SU Tau</td>
<td>78</td>
<td>V Boo</td>
<td>62</td>
</tr>
<tr>
<td>X Cam</td>
<td>122</td>
<td>V1454 Cyg</td>
<td>74</td>
<td>OP Her</td>
<td>62</td>
</tr>
<tr>
<td>SV Sge</td>
<td>120</td>
<td>V Vul</td>
<td>74</td>
<td>BQ Ori</td>
<td>62</td>
</tr>
</tbody>
</table>
Notes on Non-Programme stars (in each case the number following the star is the number of observations submitted in 2011)

UV Boo 67
GCVS states that originally thought variable but later observations failed to show this. I am not so sure, but are there any missing observations?
(See also my note under “From the Director”)

Figure 1: UV Bootes

CSV171 (NSV 650) (in Cassiopeia) 125
Poorly-studied irregular variable of early spectral type. Is the reduction in scatter due to fewer observers nowadays?

V377 Cas 105
A Delta Scuti star according to the GCVS! I am not sure I agree.

T Cep 93
Officially dropped many years ago, before I became Director, but obviously a number of observers still enjoy observing it.

F128 Cyg 82
An SX Ari star with a variation of less than 0.1 magnitude!?

USNO1425.0982 (in Cygnus) 71
Very faint! I guess it was a “TOO” - Target of Opportunity.
T Cyg
A slow irregular variable not showing much variation.

S10930 Lyr
This has now been designated V493 Lyr and is a UGem type.

Figure 2: NSV 650

Figure 3: V377 Cassiopeiae

roger.pickard@sky.com
Unfortunately, neither this list nor the ‘Most Observed Stars in 2011’ list include any data that was submitted on paper, nor do they include CCD observations, and so they are not strictly accurate. However, I do think they give us a good idea as to what observers are interested in observing.

Firstly, unless we get some observations of the far southern stars in the next year or so, and if further research shows we have little data in our own database, we will seriously consider dropping them. This also applies to SRs on the Telescopic Programme. However, I wish to emphasise that observations are still very much required for the two ICCE Programme stars (for which it appears we had no observations last year), and all the Polars.

The ‘Eclipsing Binary Programme’ will be part of a separate review.

Stars on the main VSS Programmes not observed in 2011

<table>
<thead>
<tr>
<th>Star</th>
<th>Const</th>
<th>Prog</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
<td>Aql</td>
<td>Tele</td>
<td>UGSS</td>
</tr>
<tr>
<td>UW</td>
<td>Aql</td>
<td>Tele</td>
<td>Lc</td>
</tr>
<tr>
<td>V654 (SDSSp J0729+3658)</td>
<td>Aur</td>
<td>Tele</td>
<td>NL</td>
</tr>
<tr>
<td>CC</td>
<td>Cam</td>
<td>ICCE</td>
<td>Mira</td>
</tr>
<tr>
<td>CG</td>
<td>Dra</td>
<td>Tele</td>
<td>UG</td>
</tr>
<tr>
<td>RXJ1715+6856</td>
<td>Dra</td>
<td>Tele</td>
<td>UGSU</td>
</tr>
<tr>
<td>RXJ1831+6511</td>
<td>Dra</td>
<td>Tele</td>
<td>DN</td>
</tr>
<tr>
<td>DW</td>
<td>Gem</td>
<td>Tele</td>
<td>Lb</td>
</tr>
<tr>
<td>EX</td>
<td>Hya</td>
<td>Tel</td>
<td>far south</td>
</tr>
<tr>
<td>DP</td>
<td>Leo</td>
<td>Polar</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Leo</td>
<td>Polar</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>LMi</td>
<td>Tele</td>
<td>SRd</td>
</tr>
<tr>
<td>J0747+4248</td>
<td>Lyn</td>
<td>Tele</td>
<td>NL</td>
</tr>
<tr>
<td>FH (SDSSp J0813+4528)</td>
<td>Lyn</td>
<td>Tele</td>
<td>UG</td>
</tr>
<tr>
<td>SDSSp J0816+4530</td>
<td>Lyn</td>
<td>Tele</td>
<td>UGWZ</td>
</tr>
<tr>
<td>FR (EUVEJ0854+390)</td>
<td>Lyn</td>
<td>Polar</td>
<td></td>
</tr>
<tr>
<td>V2110</td>
<td>Oph</td>
<td>Tele</td>
<td>NC</td>
</tr>
<tr>
<td>V2301</td>
<td>Oph</td>
<td>Polar</td>
<td></td>
</tr>
</tbody>
</table>
V1309 Ori Polar
BU Per Tele SRc
RS Per Tele SRc
SDSSp J2303+0106 Psc Tele UG
V1017 Sgr Tele far south
V1172 Sgr Tele far south
V3645 Sgr Tele far south
V745 Sco Tele far south
FR Sct Tele far south
1RXS J161008.0+035222 Ser Polar
MR Ser Polar
SDSS J103533.03+055158.4 Sex Tele UGWZ:+E
NSV2249 Tau ICCE Mira?
AR UMa Polar
EU UMa Polar
QQ Vul Polar

34 stars in all (22 x Telescopic, 10 x Polar, 2 x ICCE)

roger.pickard@sky.com

CHART NEWS
JOHN TOONE

The following new charts are now posted to the VSS web site and are available in paper form from the Chart Secretary:

Telescopic Charts

079.02 VY Aqr
New 5 degree and 30 minute field charts replace chart 079.01. Comparison stars A, B, E, G, K, M, S and U are dropped. Comparison stars Y and Z have been introduced. The new sequence consists of V measurements from Tycho, ASAS3, and Henden. The previous sequence was poorly calibrated (too faint) below magnitude 14.0.

037.02 V Boo
New 6 degree and 3 degree field charts replace chart 037.01. Comparison stars A, C, K, N, S and U are dropped. The new sequence consists of V measurements from Tycho and Pickard, and is now consistent with Skiff’s measurements at Lowell Observatory in 1996.
044.02 W CrB
New 3 degree and 30 minute field charts replace chart 044.01. Comparison stars F and U are dropped. The new sequence consists of V measurements from Tycho, APASS and CMC14. The previous sequence was poorly calibrated (too bright) below magnitude 11.0.

060.02 RU Her
New 5 degree and 1 degree field charts replace chart 060.01. Comparison star B is dropped and comparison stars R, S and T have been added. The new sequence consists of V measurements from Tycho, BSM, and Pickard. The previous sequence had erroneous values for comparison stars F and P and the chart has been updated at the request of Mike Gainsford.

069.02 SU Lac
A new 30 minute field chart replace chart 069.01. Comparison star E has been dropped and comparison star T has been introduced. The new sequence consists of V measurements from Tycho, TASS, and Pickard. The previous sequence had erroneous values for comparison stars K, L, M and P, and the chart has been updated at the request of Philip Withers.

329.01 RR Tau
No previous BAA VSS chart existed for this star which has been selected as variable star of the year in the 2013 Handbook. A 30 minute field chart has been drawn and the sequence consists of V measurements from Wright.

056.02 RV Tau
New 3 degree and 1 degree field charts replace chart 056.01. Comparison stars C, E, J, M, N, P, Q, R, T, U and W are dropped. Comparison stars X and Y have been introduced. The new sequence consists of V measurements from Tycho, Hipparcos, ASAS3 and TASS, and has been culled at the faint end as RV Tau only rarely fades below magnitude 11.0.

066.02 T UMa
New 6 degree and 1 degree field charts replace chart 066.01. Comparison stars B, D, H, Q, X and CC are dropped. The new sequence consists of V measurements from Hipparcos, TASS, and SRO, plus a Harvard Photometry measure for comparison star L to combat the colour difference with comparison star K. The previous sequence was poorly calibrated (too bright) below magnitude 12.5.

Binocular Charts

104.02 RV Boo and RW Boo
A new 9 degree field chart replaces chart 104.01. Comparison stars A and G are dropped and comparison stars N and P have been added. The new V sequence is taken from Tycho.

219.02 RX Boo
A new 9 degree field chart replaces chart 219.01. Comparison stars B and D are dropped and comparison star H has been added. The new V sequence is taken from Tycho and corrects a long standing anomaly with respect to comparison stars C, D and E.
215.02 Y and TU CVn
A new 9 degree field chart replaces chart 215.01. Comparison stars E, F and G are dropped, and comparison stars H, K and L have been added. The new V sequence is taken from Tycho and has a reduced colour range.

233.02 V465 Cas
A new 6 degree field chart replaces chart 233.01. There are no changes to the selection of comparison stars, but the sequence now consists of V measures from Tycho. The previous sequence was systematically too bright below magnitude 6.5.

112.02 Mu Cep
A new 18 degree field chart replaces chart 112.01. Comparison stars B, E, G, L and P are dropped. The new V sequence is taken from Tycho, and has a reduced colour range.

232.02 RU Cep and AR Cep
A new 6 degree field chart replaces chart MDT1985May06. The former chart included a sequence for RX Cep, which is now considered constant and has been dropped from the BAA VSS Binocular Programme. Comparison stars D, H, K and L are dropped and comparison star R has been added. The new V sequence is taken from Tycho and Hipparcos.

232.02 AF Cyg and V973 Cyg
A new 9 degree field chart replaces chart 232.01. Comparison stars A, K, L, N, P, S and T are dropped and comparison stars W and X have been added. The new V sequence is taken from Hipparcos and Tycho.

228.02 U Del and EU Del
A new 9 degree field chart replaces chart 228.01. Comparison stars B, C, H and K are dropped and comparison stars N and P have been added. Comparison star D, dropped in 1996, has been reinstated. The new sequence is a combination of V measurements taken from Tycho, plus a Harvard Photometry measure for comparison star D, to combat the colour difference with nearby comparison star F.

223.02 X Her and ST Her
A new 9 degree field chart replaces chart 223.01. Comparison stars C, 1 and 8 are dropped. The new V sequence is taken from Tycho. The previous ST Her sequence was systematically too bright below magnitude 8.0.

113.02 SX Her
A new 9 degree field chart replaces chart 113.01. Comparison star B is dropped, and comparison star H has been added. The new V sequence is taken from Tycho. The previous sequence was calibrated 0.2 magnitudes too bright.

107.02 UW Her
A new 6 degree field chart replaces chart 107.01. Comparison stars 1, C and D are dropped. The new V sequence is taken from Tycho and Hipparcos, and has a reduced colour range.

330.01 R Lyr
A new 20 degree field chart replaces chart MDT1972-11-11. Comparison stars a, c, e, g, k
and I are dropped and comparison star N is introduced. The sequence letters are now all capitals and the sequence colour range is much reduced. The new V sequence is taken from Hipparcos.

331.01 XY Lyr
A new 9 degree field chart replaces chart MDT 72-09-15. Comparison stars G and Z are dropped and comparison stars H, K and N have been added. All comparison stars are now aligned east/west to the north of Vega. The new V sequence is taken from Tycho.

114.02 W Tri
A new 6 degree field chart replaces chart 114.01. Comparison stars X and E are dropped and comparison stars G and H have been added to ensure the sequence covers the full range of W Tri. The new V sequence is taken from Tycho.

097.02 SS Vir
A new 6 degree field chart replaces chart 097.01. There are no changes to the selection of comparison stars, but the sequence now consists of V measures from Tycho.

098.02 SW Vir
A new 9 degree field chart replaces chart 098.01. Comparison stars C and E are dropped. The new V sequence is taken from Tycho and corrects an erroneous value previously given for comparison star F.

Note:

During the preparation of the above charts the following errors were noted in the Millennium Star Atlas:

1. V564 Per has an artificially large variable star symbol.
2. RV Tau is not labelled as a variable star.
3. W Tri has an artificially large variable star symbol.
4. AH Tri has an artificially large variable star symbol.
5. SS Vir is not labelled as a variable star.

ECLIPSING BINARY NEWS
DES LOUGHNEY

Eta Geminorum

At the time of writing (early November 2012) observations seem to show that the eclipse minimum occurred around the end of August. Since that time the system has been slowly brightening with measurements perhaps illustrating the 20 day period (out of eclipse) pulsation of around 0.1 magnitude. Visual observations in August 2012 indicate fading during most of that month though observations were difficult as the system was low in the pre dawn sky in the east.
Below are the DSLR measurements from JD 2455600.

All observations seem to suggest that the eclipse has not taken place as predicted. Mid eclipse had been predicted for the start of October whereas it occurred at the end of August. It is too early to state when the eclipse will have ended. Observations should continue, until observing becomes impossible in the summer of 2013, so that we can be more certain of the out of eclipse variations.

Beta Lyrae

Following the article in VSSC 153, DSLR measurements of the Beta Lyrae system were started from 5 September 2012. The diagram below illustrates the measurements. There have been enough measurements to illustrate the light curve of a Class B Eclipsing Binary (a pair of stars that are semi-detached), but not enough measurements around either primary minimum or secondary minimum to make any determination of the period (and whether it has changed). This is because there have not been enough clear nights to obtain the necessary measurements.
CAPAS (Congres Amateurs Professionales Astrophysique Stellaire)

I attended this conference in Rodez, France, which was held between 28th September and 1st October 2012. I was interested in the GEOS RR Lyr Survey, but particularly the sessions on Eclipsing and Spectroscopic Binaries. The slides and abstracts of these sessions can be examined on: http://rr-lyr.ast.obs-mip.fr/capas2012/article_0001.en.php

There was a presentation by Oleg Malkov of the Institute of Astronomy, Moscow, on the ‘Classification of eclipsing binaries: extreme and unusual systems’. The abstract for this presentation is:

“We have compiled a catalogue of eclipsing binaries, containing some 7200 systems. It is the largest catalogue, containing classified eclipsing binaries. We have also developed a procedure for the classification of eclipsing binaries. In this talk I present data on several eclipsing binaries, which cannot be classified. Observational data for them are too contradictory. Additional observations are needed to attribute them to one or another class, or, perhaps, new classes should be introduced to find their places in the evolutionary scheme. Such observations can be made both by professional and by amateur astronomers.”

Malkov listed the systems that are worth examining. The full list can be seen as part of his slides on the CAPAS website. What might be of interest to us in the UK are the systems RT Lac, AO Cas, OW Gem and CQ Cep. There will be more about these systems in future editions of the VSSC. It might well be worth, in the meantime, looking at CQ Cep which is circumpolar from the UK and is continuously in eclipse. It has an out of eclipse magnitude of around 9, a period of about 1.64 days, and a primary minimum of 0.5 magnitude in depth and a secondary minimum of 0.4 magnitude in depth. It can just be tackled visually though it is a good target for DSLR photometry.

It is a strange system because both stars are of about 21 solar masses. The primary is a Wolf-Rayet star. Both stars produce strong stellar winds which result in an asymmetrical light curve. The primary star is now of less mass than the secondary star because it has ejected so much of its hydrogen outer layers via its stellar wind.

The brightest known star is a Wolf Rayet star (R136a1) of 265 solar masses with a luminosity of 8.7 million solar luminosities.

desloughney@blueyonder.co.uk

OBSERVING BRIGHT RR LYRAE STARS

Des Loughney and Jean-François Le Borgne

At the CAPAS conference held in Rodez, France, from 28th September to 1st October 2012, a presentation was made on the ‘GEOS RR Lyrae Survey’ by Jean-François Le Borgne (Institute of Research in Astrophysics and Planetology, Toulouse, France; and GEOS – European Group for the Observation of Variable Stars).

It was hoped that BAA VSS observers would help in this survey. Below are some details of the observing campaign.
Observing procedure

The aim of the proposed observations is to determine the time of maximum of RR Lyr stars to be included in the GEOS RR Lyr database, contributing to the study of the long term period variation of these stars.

RR Lyr stars are relatively short period pulsating stars. Their typical period is 12 hours, and the rise of the light curve before maximum is about 2 hours. To determine times of maximum we need to have enough magnitude measurements before and after the maximum. We recommend to start observing a couple of hours before the maximum and to end a couple of hours after. A good time sampling is a measurement every 5 minutes, at least, and no more than 10 minutes, at least in the fast rising branch of the light curve.

Observations may be done using CCD, DSLR, or be visual measurements. If possible, the use of filters (BVR, for example) is recommended, but not mandatory. Please send reports to Jean-François Le Borgne <jean-francois.leborgne@irap.omp.eu> or Jacqueline Vandenbroere <j.vandenbroere@skynet.be>. Visual measurement reports should be sent to Jacqueline. For CCD and DSLR observations, reports should contain the list of measurements with Julian day (NOT heliocentric JD), difference of magnitude with comparison star, uncertainty of measurement, and difference of magnitude of check star with comparison star. A list of suggested comparison and check stars are given on page 15. Reported JD times should be given with 5 decimal digits, and CCD or DSLR difference magnitudes with 3 decimal digits. Reports of visual observations should contain the list of measurements with Julian day and magnitude estimate. Reports may be excel files (or libre Office files) or plain text files.

ToMs are determined by Jean-François or Jacqueline and published in a GEOS circular (otherwise requested by observer) in addition to be included in the database. There is no exclusivity requested for these data on bright RR Lyr stars. Data may be archived in BAA or AAVSO databases.

Comparison stars
List of comparison stars suggested to use. They are chosen not too far from the variable stars, and with colours close to the one of the target stars, the spectral types of which are A-F. If comparison and check stars of the variable star you are observing are missing in the table, or if the stars in the table are not suitable for your instrument, please contact Jean-François (jean-francois.leborgne@irap.omp.eu). You may also choose the comparison and check stars your self, looking for A or F stars if possible.
The suggested list of comparison stars are chosen for their proximity to the variable stars, with colours close to the target stars, the spectral types of which are A-F.
Short list of stars brighter than ~11.5 at minimum from the northern hemisphere.

This list contains a few RR Lyrae stars observable in January, February and March 2013. Magnitudes at maximum and minimum are given in Johnson V filter. Periods are in days. Right ascensions are in Hms, declinations in °′″, for J2000.0 equinox and epoch. These data are extracted from GCVS, 2011 internet edition.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X Ari</td>
<td>03 08 30.88</td>
<td>+10 26 45.2</td>
<td>8.97</td>
<td>9.95</td>
<td>2453739.376</td>
<td>0.651169</td>
</tr>
<tr>
<td>RS Boo</td>
<td>14 33 33.21</td>
<td>+31 45 16.6</td>
<td>9.63</td>
<td>10.88</td>
<td>2448500.337</td>
<td>0.377339</td>
</tr>
<tr>
<td>ST Boo</td>
<td>15 30 39.23</td>
<td>+35 47 4.3</td>
<td>10.49</td>
<td>11.41</td>
<td>2419181.486</td>
<td>0.622290687</td>
</tr>
<tr>
<td>W CVn</td>
<td>14 06 27.98</td>
<td>+37 49 41.5</td>
<td>10.03</td>
<td>10.96</td>
<td>2421402.4238</td>
<td>0.551759337</td>
</tr>
<tr>
<td>SU Dra</td>
<td>11 37 56.60</td>
<td>+67 19 47.0</td>
<td>9.18</td>
<td>10.27</td>
<td>2454928.473</td>
<td>0.660425</td>
</tr>
<tr>
<td>SW Dra</td>
<td>12 17 46.63</td>
<td>+69 30 38.2</td>
<td>9.94</td>
<td>10.94</td>
<td>2455282.372</td>
<td>0.56967214</td>
</tr>
<tr>
<td>RR Leo</td>
<td>07 43.45</td>
<td>+23 59 30.3</td>
<td>9.94</td>
<td>11.27</td>
<td>2454913.410</td>
<td>0.4524025</td>
</tr>
<tr>
<td>TT Lyn</td>
<td>09 03 07.78</td>
<td>+44 35 08.1</td>
<td>9.42</td>
<td>10.21</td>
<td>2455203.446</td>
<td>0.5974305</td>
</tr>
<tr>
<td>AR Per</td>
<td>04 17 17.19</td>
<td>+47 24 00.6</td>
<td>9.92</td>
<td>10.83</td>
<td>2454743.605</td>
<td>0.4255505</td>
</tr>
<tr>
<td>TUUMa</td>
<td>11 29 48.49</td>
<td>+30 04 02.4</td>
<td>9.26</td>
<td>10.24</td>
<td>2442831.4947</td>
<td>0.5576587</td>
</tr>
<tr>
<td>RVUMa</td>
<td>13 33 18.09</td>
<td>+53 59 14.6</td>
<td>9.81</td>
<td>11.3</td>
<td>2445075.511</td>
<td>0.46806</td>
</tr>
</tbody>
</table>
RY CAMELOPARDALIS LIGHT CURVES

Melvyn Taylor

This star is well worth observing. It is a ‘good’ SRB object and circumpolar at:

RA 04h 31m Dec. +64° 26' (2000); 7.3-9.4 magnitude, SRB, 136d (GCVS).

The light curves give a favourable impression of a typical semi-regular variable, its spectrum is M3III with a B-V (TYC) of +1.91. The plots are visual magnitude against Julian Dates covering the interval from 1971 to 1994, the estimates are from the BAAVSS database. Varying from a mean maximum of 7.7 to 9.1 magnitude the overall average period is found to be 138d from this data. The mean magnitude was 8.5 (s.d. 0.30). The chart has hardly been found to need revision and has a date (no sequence number) of 1972 Jul 29. Other variables on the chart include programme objects ZZ Cam and UV Cam. The field is not an easy one to find initially.

Observers

Figure 1.
THE TRANSFORMATION COEFFICIENT FOR THE CANON 550D DSLR.

Des Loughney

In a previous article on DSLR Transformation Coefficients, published in VSSC 140 (June, 2009), it was noted that the Transformation Coefficient of a Canon 450D DSLR was 0.15. Knowing this Coefficient, allowed the estimation of the Johnson V magnitude of a star from the green channel data obtained from that star, and analysed by AIP4WIN.

In the summer of 2012 I obtained a Canon 550D DSLR and decided to determine its
Transformation Coefficient (TC) using the green channel data obtained with the latest version of AIP4WIN (version 2.4.0).

The methodology of obtaining the TC is to compare a set of unvarying stars over a range of (B-V) colour indices. The predicted V magnitude differences between the stars is compared with the actual green channel magnitude differences. The difference between predicted and actual magnitudes is then plotted against the (B-V) colour indices of each set of compared stars. This allowed the estimation of the Transformation Coefficient of the Canon 550D camera which turned out to be 0.08.

The five stars compared were all close together in the constellation Auriga. They were:

HIP 25048 [ρAur] 5.22V and (B-V) of -0.129
HIP 24902 5.46V and (B-V) of +0.122
HIP 25143 5.54V and (B-V) of +0.127
HIP 24813 4.69V and (B-V) of +0.630
HIP 24771 6.22V and (B-V) of +1.386

Fifty images of these stars were obtained using the Canon 550D with a Canon 100mm lens, and settings of exposure 5 seconds, ISO 800 and f4. The images were analysed with AIP4WIN in five stacks of ten. Relative magnitudes were measured using the green channel data. In the figure below the difference between the predicted magnitude difference and the measured magnitude difference forms the x axis. On the y axis forms the difference between the (B-V) colour indices of the compared stars. Within a spreadsheet the magnitude difference for a particular (B-V) difference was plotted on the chart illustrated below.
The line was calculated by a spreadsheet function. The points that were taken into account in plotting the straight line were not expected to fall exactly on the line. For this to happen the V magnitudes of the five stars and their (B-V) colour indices would have to be accurate, or to be unchanged since the time they were measured by Hipparcos. Another reason for departures from the straight line is that the five stars are not completely unvarying. Hipparcos states that all may vary by up to 0.02 magnitude, with the exception of HIP25143 which can vary by 0.03 magnitude.

In the previous 2009 article it was stated that the correction to the green channel magnitude of P Cygni was 0.05. Thus a green channel magnitude of 4.830 was corrected to 4.780. Using the Canon 550D and the newly determined TC the correction is 0.029 magnitude.

11th November 2012
desloughney@blueyonder.co.uk

* * *

CAPAS 2012, RODEZ
(SCRAP BOOK)
JANET SIMPSON

Laurent Corp and the Andromèda 4A association are to be congratulated for the success of their first international congress of stellar astrophysics for amateurs and professionals. There were over 60 participants from eight countries: France, Belgium, Russia, Tunisia, Spain, Italy, USA, and UK.

With ‘CAPAS Abstracts’ already printed in VSSC 151, and VSSC 153 I feel we have already covered much of the content of this meeting. In addition, slides of many of the talks can now be downloaded from <http://rr-lyr.ast.obs-mip.fr/capas2012/article_0001.en.php> and photographs of the conference can be found on <http://www.astrosurf.com/andromede/capas-suite/>.

The meeting was a chance for us to see what is going on outside the UK and to find opportunities for amateurs and professionals to work together. The general public were not forgotten with two lectures scheduled for them on Friday, and Saturday evenings, which we were also welcome to attend.

There were various exhibition booths and stands in the Conference hall. Andromedae 4A displayed their work results and telescope images. Shelyac had examples of spectrographs they have designed, with information and advice. It was also a good chance to purchase a copy of the EAS, EDP Sciences publication “Astronomical Spectroscopy for Amateurs” from Olivier Thizy. GEOS (European Group Stellar Observation), displayed their research results, and the BAA VSS put up a poster display of their new database.
On Sunday afternoon we had an outing to the Musée Fenaille, principally to see the collection of Neolithic/Copper Age statue Menhirs from Aveyron which are about 2500 - 3000 BC, and are representative of both male and female forms. The finest is Dame de Saint-Sernin. We had an excellent tour guide, who spoke French, which was beautifully translated into English by Danielle Feniou.

Olga Kiyaeva (Pulkovo observatory, St Petersburg Russia) spoke of “Dynamic investigations of visual double and multiple stars based on 50 years of observations from the Pulkova observatories 26 inch refractor.”
Sunday Afternoon

We were intrigued to see several statues of dogs in Rodez which turned out to be ‘Lost Dogs’ by the artist Aurèle Ricard. These were part of an exhibit which was on from 25th June until 30th September! In the photo of Des and the Lost Dog, three of six small yellow lost dogs can be seen on the Musee Denys-Puech behind.

Rémi Cabanac (Professional astronomer, IRAP, France, and Honorary President of Association Andromède 4A) spoke about ‘Supernovae, the explosive death of the stars’. Laurent Corp (GEOS, AAVSO, BAAVSS) spoke of ‘The state of eclipsing binary observations by amateurs’ and James Lequeux (Astronomer Emeritus, Observatory of Paris) on the ‘Life and death of stars, and the Evolution of binary massive stars’.
BINOCULAR PRIORITY LIST

MELVYN TAYLOR

(Includes *XX Cam, Mira, R CrB, and R Hya* which are also on the telescopic programme)

<table>
<thead>
<tr>
<th>Variable</th>
<th>RA (2000)</th>
<th>Dec</th>
<th>Range</th>
<th>Type</th>
<th>Period</th>
<th>Chart</th>
<th>Prog</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ And</td>
<td>00 28</td>
<td>+35 35</td>
<td>8.0-8.9</td>
<td>SR</td>
<td>346d</td>
<td>303.01</td>
<td></td>
</tr>
<tr>
<td>EG And</td>
<td>00 45</td>
<td>+40 41</td>
<td>7.1-7.8</td>
<td>ZAnd</td>
<td>353d</td>
<td>072.02</td>
<td></td>
</tr>
<tr>
<td>V Aql</td>
<td>19 04</td>
<td>-05 41</td>
<td>6.6-8.4</td>
<td>SRb</td>
<td>234d</td>
<td>230.02</td>
<td></td>
</tr>
<tr>
<td>UU Aur</td>
<td>06 37</td>
<td>+38 27</td>
<td>5.1-6.8</td>
<td>SRb</td>
<td>234d</td>
<td>230.02</td>
<td></td>
</tr>
<tr>
<td>AB Aur</td>
<td>04 56</td>
<td>+30 33</td>
<td>6.7-8.4</td>
<td>Ina</td>
<td>301.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Boo</td>
<td>14 30</td>
<td>+38 52</td>
<td>7-12</td>
<td>Sra</td>
<td>258d</td>
<td>037.01</td>
<td></td>
</tr>
<tr>
<td>RW Boo</td>
<td>14 41</td>
<td>+31 34</td>
<td>7.4-8.9</td>
<td>SRb</td>
<td>209d</td>
<td>104.01</td>
<td></td>
</tr>
<tr>
<td>RX Boo</td>
<td>14 24</td>
<td>+25 42</td>
<td>6.9-9.1</td>
<td>SRb</td>
<td>160d</td>
<td>219.01</td>
<td></td>
</tr>
<tr>
<td>ST Cam</td>
<td>04 51</td>
<td>+68 10</td>
<td>6.0-8.0</td>
<td>SRb</td>
<td>300d</td>
<td>111.02</td>
<td></td>
</tr>
<tr>
<td>XX Cam</td>
<td>04 09</td>
<td>+53 22</td>
<td>7.3-9.7</td>
<td>RCB</td>
<td>068.01</td>
<td>T/B</td>
<td></td>
</tr>
<tr>
<td>X Cnc</td>
<td>08 55</td>
<td>+17 04</td>
<td>5.6-7.5</td>
<td>SRb</td>
<td>195d</td>
<td>231.01</td>
<td></td>
</tr>
<tr>
<td>RS Cnc</td>
<td>09 11</td>
<td>+30 58</td>
<td>5.1-7.0</td>
<td>SRc</td>
<td>120d?</td>
<td>269.01</td>
<td></td>
</tr>
<tr>
<td>V CVn</td>
<td>13 20</td>
<td>+45 32</td>
<td>6.5-8.6</td>
<td>SRA</td>
<td>192d</td>
<td>214.02</td>
<td></td>
</tr>
<tr>
<td>WZ Cas</td>
<td>00 01</td>
<td>+60 21</td>
<td>6.9-8.5</td>
<td>SRb</td>
<td>186d</td>
<td>1982Aug16</td>
<td></td>
</tr>
<tr>
<td>V465 Cas</td>
<td>01 18</td>
<td>+57 48</td>
<td>6.2-7.8</td>
<td>SRb</td>
<td>60d</td>
<td>233.01</td>
<td></td>
</tr>
<tr>
<td>γ Cas</td>
<td>00 57</td>
<td>+60 43</td>
<td>1.6-3.0</td>
<td>GCAS</td>
<td>064.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rho Cas</td>
<td>23 54</td>
<td>+57 29</td>
<td>4.1-6.2</td>
<td>SRd</td>
<td>320d</td>
<td>064.01</td>
<td></td>
</tr>
<tr>
<td>W Cep</td>
<td>22 37</td>
<td>+58 26</td>
<td>7.0-9.2</td>
<td>SRc</td>
<td>312.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Cep</td>
<td>22 52</td>
<td>+85 03</td>
<td>7.0-7.9</td>
<td>SRb</td>
<td>1985May06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mu Cep</td>
<td>21 44</td>
<td>+58 47</td>
<td>3.4-5.1</td>
<td>SRc</td>
<td>730d</td>
<td>062.03</td>
<td></td>
</tr>
<tr>
<td>O Cet</td>
<td>02 19</td>
<td>-02 59</td>
<td>2.0-10.1</td>
<td>M</td>
<td>332d</td>
<td>039.02</td>
<td>T/B</td>
</tr>
<tr>
<td>R CrB</td>
<td>15 48</td>
<td>+28 09</td>
<td>5.7-14.8</td>
<td>RCB</td>
<td>041.04</td>
<td>T/B</td>
<td></td>
</tr>
<tr>
<td>W Cyg</td>
<td>21 36</td>
<td>+45 22</td>
<td>5.0-7.6</td>
<td>SRb</td>
<td>131d</td>
<td>062.03</td>
<td></td>
</tr>
<tr>
<td>AF Cyg</td>
<td>19 30</td>
<td>+46 09</td>
<td>6.4-8.4</td>
<td>SRb</td>
<td>92d</td>
<td>232.01</td>
<td></td>
</tr>
<tr>
<td>CH Cyg</td>
<td>19 25</td>
<td>+50 15</td>
<td>5.6-10.5</td>
<td>ZAnd+SR</td>
<td>97</td>
<td>069.03</td>
<td></td>
</tr>
<tr>
<td>U Del</td>
<td>20 46</td>
<td>+18 06</td>
<td>5.6-7.9</td>
<td>SRb</td>
<td>110d?</td>
<td>228.01</td>
<td></td>
</tr>
<tr>
<td>EU Del</td>
<td>20 38</td>
<td>+18 16</td>
<td>5.8-6.9</td>
<td>SRb</td>
<td>60d</td>
<td>228.01</td>
<td></td>
</tr>
<tr>
<td>TX Dra</td>
<td>16 35</td>
<td>+60 28</td>
<td>6.6-8.4</td>
<td>SRb</td>
<td>78d?</td>
<td>106.02</td>
<td></td>
</tr>
<tr>
<td>AH Dra</td>
<td>16 48</td>
<td>+57 49</td>
<td>7.0-8.7</td>
<td>SRb</td>
<td>158d</td>
<td>106.02</td>
<td></td>
</tr>
<tr>
<td>NQ Gem</td>
<td>07 32</td>
<td>+24 30</td>
<td>7.4-8.0</td>
<td>SR+ZAnd</td>
<td>70d?</td>
<td>077.01</td>
<td></td>
</tr>
<tr>
<td>X Her</td>
<td>16 03</td>
<td>+47 14</td>
<td>6.1-7.5</td>
<td>SRb</td>
<td>95d</td>
<td>223.01</td>
<td></td>
</tr>
<tr>
<td>SX Her</td>
<td>16 08</td>
<td>+24 55</td>
<td>8.0-9.2</td>
<td>SRd</td>
<td>103d</td>
<td>113.01</td>
<td></td>
</tr>
<tr>
<td>UW Her</td>
<td>17 14</td>
<td>+36 22</td>
<td>7.0-8.8</td>
<td>SRb</td>
<td>104d</td>
<td>107.01</td>
<td></td>
</tr>
<tr>
<td>AC Her</td>
<td>18 30</td>
<td>+21 52</td>
<td>6.8-9.0</td>
<td>RVA</td>
<td>75d</td>
<td>048.03</td>
<td></td>
</tr>
<tr>
<td>IQ Her</td>
<td>18 18</td>
<td>+17 59</td>
<td>7.0-7.5</td>
<td>SRb</td>
<td>75d</td>
<td>048.03</td>
<td></td>
</tr>
<tr>
<td>OP Her</td>
<td>17 57</td>
<td>+45 21</td>
<td>5.9-7.2</td>
<td>SRb</td>
<td>120d</td>
<td>1984Apr12</td>
<td></td>
</tr>
<tr>
<td>R Hya</td>
<td>13 30</td>
<td>-23 17</td>
<td>3.5-10.9</td>
<td>M</td>
<td>389d</td>
<td>049.02</td>
<td>T/B</td>
</tr>
<tr>
<td>RX Lep</td>
<td>05 11</td>
<td>-11 51</td>
<td>5.0-7.4</td>
<td>SRb</td>
<td>60d?</td>
<td>110.01</td>
<td></td>
</tr>
<tr>
<td>Y Lyn</td>
<td>07 28</td>
<td>+45 59</td>
<td>6.5-8.4</td>
<td>SRc</td>
<td>110d</td>
<td>229.01</td>
<td></td>
</tr>
<tr>
<td>SV Lyn</td>
<td>08 84</td>
<td>+36 21</td>
<td>6.6-7.9</td>
<td>SRb</td>
<td>70d?</td>
<td>108.03</td>
<td></td>
</tr>
<tr>
<td>U Mon</td>
<td>07 31</td>
<td>-09 47</td>
<td>5.9-7.9</td>
<td>RVB</td>
<td>91d</td>
<td>029.03</td>
<td></td>
</tr>
<tr>
<td>X Oph</td>
<td>18 38</td>
<td>+08 50</td>
<td>5.9-9.2</td>
<td>M</td>
<td>328d</td>
<td>099.01</td>
<td></td>
</tr>
<tr>
<td>BQ Ori</td>
<td>05 57</td>
<td>+22 50</td>
<td>6.9-8.9</td>
<td>SR</td>
<td>110d</td>
<td>295.01</td>
<td></td>
</tr>
</tbody>
</table>
The following predictions, based on the latest Krakow elements, should be usable for observers throughout the British Isles. The times of mid-eclipse appear in parentheses, with the start and end times of visibility on either side. The times are hours UT, with a value greater than ‘24’ indicating a time after midnight. ‘D’ indicates that the eclipse starts/ends in daylight; ‘L’ indicates low altitude at the start/end of the visibility, and ‘<<’ indicates that mid eclipse occurred on an earlier date/time.

Please contact the EB secretary if you require any further explanation of the format.

The variables covered by these predictions are:

<table>
<thead>
<tr>
<th>Variable</th>
<th>RA (2000) Dec</th>
<th>Range</th>
<th>Type</th>
<th>Period</th>
<th>Chart</th>
<th>Prog</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG Peg</td>
<td>21 51 +12 38</td>
<td>6.0-9.4</td>
<td>Nc</td>
<td></td>
<td>094.02</td>
<td></td>
</tr>
<tr>
<td>X Per</td>
<td>03 55 +31 03</td>
<td>6.0-7.0</td>
<td>GCas+Xp</td>
<td>146d</td>
<td>277.01</td>
<td></td>
</tr>
<tr>
<td>R Sct</td>
<td>18 48 -05 42</td>
<td>4.2-8.6</td>
<td>RVA</td>
<td></td>
<td>196</td>
<td>026.04</td>
</tr>
<tr>
<td>Y Tau</td>
<td>05 46 +20 42</td>
<td>6.5-9.2</td>
<td>SRb</td>
<td>242d</td>
<td>295.01</td>
<td></td>
</tr>
<tr>
<td>W Tri</td>
<td>02 42 +34 31</td>
<td>7.5-8.8</td>
<td>SRc</td>
<td>108d</td>
<td>114.01</td>
<td></td>
</tr>
<tr>
<td>Z UMa</td>
<td>11 57 +57 52</td>
<td>6.2-9.4</td>
<td>SRb</td>
<td>196d</td>
<td>217.02</td>
<td></td>
</tr>
<tr>
<td>ST UMa</td>
<td>11 28 +45 11</td>
<td>6.0-7.6</td>
<td>SRb</td>
<td>110d?</td>
<td>102.02</td>
<td></td>
</tr>
<tr>
<td>VY UMa</td>
<td>10 45 +67 25</td>
<td>5.9-7.0</td>
<td>Lb</td>
<td></td>
<td>226.01</td>
<td></td>
</tr>
<tr>
<td>V UMi</td>
<td>13 39 +74 19</td>
<td>7.2-9.1</td>
<td>SRb</td>
<td>72d</td>
<td>101.02</td>
<td></td>
</tr>
<tr>
<td>SS Vir</td>
<td>12 25 +00 48</td>
<td>6.9-9.6</td>
<td>SRa</td>
<td>364d</td>
<td>097.01</td>
<td></td>
</tr>
<tr>
<td>SW Vir</td>
<td>13 14 -02 48</td>
<td>6.4-8.5</td>
<td>SRb</td>
<td>150d?</td>
<td>098.01</td>
<td></td>
</tr>
</tbody>
</table>

ECLIPSING BINARY PREDICTIONS
Des Loughney

The following predictions, based on the latest Krakow elements, should be usable for observers throughout the British Isles. The times of mid-eclipse appear in parentheses, with the start and end times of visibility on either side. The times are hours UT, with a value greater than ‘24’ indicating a time after midnight. ‘D’ indicates that the eclipse starts/ends in daylight; ‘L’ indicates low altitude at the start/end of the visibility, and ‘<<’ indicates that mid eclipse occurred on an earlier date/time.

Please contact the EB secretary if you require any further explanation of the format.

The variables covered by these predictions are:

RS CVn	7.9 - 9.1V	AI Dra	7.2 - 8.2	U Sge	6.45 - 9.28V
TV Cas	7.2 - 8.2V	Z Vul	7.25 - 8.90V	RW Tau	7.98 - 11.59V
U Cep	6.8 - 9.4	Z Dra	10.8 - 14.1p	HU Tau	5.92 - 6.70V
U CrB	7.7 - 8.8V	TW Dra	8.0 - 10.5v	X Tri	8.88 - 11.27V
SW Cyg	9.24 - 11.83V	S Equ	8.0 - 10.08V	TX Uma	7.06 - 8.80V
V367 Cyg	6.7 - 7.6V	Z Per	9.7 - 12.4p	Del Lib	4.9 - 5.9
Y Psc	10.1 - 13.1	SS Cet	9.4 - 13.0	RZ Cas	6.3 - 7.9

Note that predictions for Beta Per and Lambda Tau can be found in the BAA Handbook.

For information on other eclipsing binaries see the website:
http://www.as.ap.krakow.pl/o-c/index.php3

Again please contact the EB secretary if you have any queries about the information on this site and how it should be interpreted.
2013 Jan 1 Tue
TV Cas......00(04)07D
del Lib.........(05)07D
U Cep..........D17(13)18
RW Tau......D17(14)19
RZ Cas........D17(19)22
HU Tau......21(25)28L
X Tri..........23(26)27L

2013 Jan 2 Wed
Z Vul........05(11)07D
U Sge........L06(09)07D
SS Cet........D17(16)21
AI Dra.......D17(17)18
TV Cas.......20(24)28
TW Dra.......21(26)31D
RZ Cas.......21(24)26
TX UMa......22(26)31D
RS CVn.....L22(24)30
X Tri.........22(25)26L
SW Cyg......24(30)24L

2013 Jan 3 Thu
SW Cyg...L02(06)07D
del Lib.......07(13)07D
Y Psc........D17(15)20
Z Dra........D17(18)20
AI Dra.......20(22)23
U Cep.........20(25)30
X Tri.........22(24)26L
HU Tau......23(27)28L

2013 Jan 4 Fri
U CrB..........L00(00)06
RZ Cas.......02(04)07
RW Tau......04(09)05L
TV Cas......D17(19)24
Z Vul......D17(22)20L
X Tri.........21(24)26

2013 Jan 5 Sat
Z Dra...........00(03)05
AI Dra........01(02)04
RZ Cas........07(09)07D
Z Per........D17(13)18
SS Cet........D17(16)21
U Sge......D17(18)19L
TW Dra.......D17(22)27
X Tri.........20(23)25
TX UMa......23(28)31D

2013 Jan 6 Sun
HU Tau......00(04)04L
AI Dra.........06(07)07D
U Cep..........D17(13)18
TV Cas.......D17(15)19
X Tri.........20(22)25
RW Tau.....23(27)28L

2013 Jan 7 Mon
Z Vul.........L05(08)07D
U CrB.........05(11)07D
S Equ........D17(12)18
RZ Cas.......D17(19)21
SW Cyg......D17(20)24L
Z Dra.........17(20)22
X Tri.........19(22)24
RS CVn.....L21(19)26

2013 Jan 8 Tue
HU Tau......01(05)04L
del Lib.......L04(05)07D
TV Cas.......06(10)07D
Z Per..........D17(14)19
SS Cet......D17(15)20
AI Dra.......D17(17)18
TW Dra.......D17(17)22
X Tri.........18(21)23
U Cep.........20(25)30
RZ Cas.......21(23)26

2013 Jan 9 Wed
TX UMa......01(05)07D
Z Dra........02(04)07
U Sge........L05(03)07D
Z Vul..........D17(19)19L
RW Tau......D17(22)26
X Tri.........18(20)23
AI Dra.......20(21)23

2013 Jan 10 Thu
RZ Cas.......02(04)06
TV Cas.......02(06)07D
HU Tau......03(07)04L
V367Cyg.L04(43)07D
del Lib........06(13)07D
X Tri.......D17(19)22
V367Cyg.D17(43)22L
S Equ.........17(23)19L
U CrB.........L24(22)27

2013 Jan 11 Fri
AI Dra.........01(02)04
V367Cyg..L04(19)07D
RZ Cas.......06(09)07D
TW Dra......D17(12)17
U Cep........D17(13)17
SS Cet......D17(15)19
Z Per.........D17(15)20
X Tri.........D17(19)21
V367Cyg.D17(19)22L
Z Dra.........19(22)24
TV Cas........21(25)30

2013 Jan 12 Sat
TX UMa......02(07)07D
SW Cyg.......03(09)07D
V367Cyg..L04(<<)07D
Z Vul.........L05(06)07D
AI Dra.......06(07)07D
U Sge........07(12)07D
V367Cyg..D17(<<)22L
X Tri.........D17(17)20
RW Tau.......D17(16)21
X Tri.........D17(18)21

2013 Jan 13 Sun
Z Dra.........04(06)07D
V367Cyg..L04(<<)07D
X Tri.........D17(17)20
RZ Cas.......D17(18)20
TV Cas.......D17(21)25
U Cep.........20(25)29

2013 Jan 14 Mon
U CrB..........03(08)07D
TW Dra.......03(08)07D
SS Cet......D17(14)19
AI Dra.......D17(17)18
X Tri.........D17(17)19
Z Per.........D17(17)22
Z Vul..........D17(17)19L
Y Psc.........18(22)21L
RZ Cas.......20(23)25

2013 Jan 15 Tue
del Lib.......L03(04)07D
TX UMa......04(08)07D
X Tri.......D17(16)19
TV Cas......D17(16)21
U Sge.......D17(22)18L
AI Dra.......20(21)23
Z Dra.........21(23)26

2013 Jan 16 Wed
RZ Cas.......01(03)06
X Tri........D17(15)18
SW Cyg..D17(23)23L
TW Dra.......22(27)31D

2013 Jan 17 Thu
AI Dra.......01(02)03
SW Cyg.....L01(<<)05
RS CVn.....03(10)07D
Z Vul.........L04(04)07D
Z Dra.......05(08)07D
RZ Cas.......06(08)07D
del Lib.......06(12)07D
SS Cet......D17(13)18
Z Per.........D17(18)23
S Equ.......D17(20)18L
U CrB........L23(19)25

2013 Jan 18 Fri
RW Tau......00(05)04L
TX UMa......05(10)07D
AI Dra.......06(07)07D
Z Dra.......D17(16)19
Y Psc.......D17(17)21
U Cep.......19(24)29

2013 Jan 19 Sat
TV Cas......03(07)07D
U Sge.......L05(07)07D
Z Vul........D17(15)19L
RZ Cas.......D17(17)20
TW Dra.......17(23)28
Z Dra.......23(25)27

2013 Jan 20 Sun
AI Dra.......D17(16)18
Z Per.........D17(20)24
RW Tau.......19(23)27L
RZ Cas.......20(22)24
TV Cas.......23(27)31D

2013 Jan 21 Mon
U CrB.........00(06)07D
TX UMa......07(11)07D
SW Cyg.....D17(13)19
AI Dra.......20(21)22
RS CVn.....22(29)31D

2013 Jan 22 Tue
RZ Cas.......00(03)05
del Lib.......L03(04)07D
Z Vul.........L04(02)07D
HU Tau......D17(15)19
U Sge.......D17(16)18L
TW Dra.......D17(18)23
Z Dra.......D17(18)21
TV Cas.......18(22)27
<table>
<thead>
<tr>
<th>Date</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Jan 23 Wed</td>
<td>AI Dra.........01(02)03 RZ Cas......05(07)07D RW Tau......D17(18)23 Z Per.........D17(21)26 U Cep.........19(24)29</td>
</tr>
<tr>
<td>2013 Jan 24 Thu</td>
<td>Z Dra.........00(03)05 AI Dra........05(07)07D del Lib......06(12)07D Z Vul.........D18(13)18 TX UMa......D18(13)18 HU Tau......D18(16)20 S Equ......D18(17)18L TV Cas......D18(18)22</td>
</tr>
<tr>
<td>2013 Jan 25 Fri</td>
<td>TW Dra......D18(13)18 RZ Cas......D18(17)19 SW Cyg......21(27)23L</td>
</tr>
<tr>
<td>2013 Jan 26 Sat</td>
<td>SW Cyg.....L01(03)07D U Sge......L04(01)07 TV Cas......D18(14)18 HU Tau......D18(17)21 Z Dra......D18(20)22 Z Per......D18(22)27 RZ Cas......19(22)24 RS CVn......L20(24)30</td>
</tr>
<tr>
<td>2013 Jan 27 Sun</td>
<td>Z Vul.......L04(00)05 TX UMa......D18(14)19 AI Dra.........20(21)22 U CrB......L23(28)31D RZ Cas......24(26)29</td>
</tr>
<tr>
<td>2013 Jan 28 Mon</td>
<td>Z Dra......02(04)07D TW Dra......04(09)07D TV Cas......05(09)07D HU Tau......D18(19)23 V367 Cyg.D18(58)21L U Cep......19(24)28</td>
</tr>
<tr>
<td>2013 Jan 29 Tue</td>
<td>AI Dra.........00(02)03 RW Tau......02(07)03L del Lib......L02(04)07D V367 Cyg.L03(34)07D U Sge......04(10)07D RZ Cas......04(07)07D Z Vul......05(11)07D V367 Cyg.D18(34)21L Z Per.........19(24)28L Y Psc......19(24)20L</td>
</tr>
<tr>
<td>2013 Jan 30 Wed</td>
<td>TV Cas.......00(05)07D V367 Cyg..L03(10)07D AI Dra.......05(07)07D V367 Cyg..D18(10)21L TX UMa......D18(16)21 SW Cyg......D18(16)22L HU Tau......D18(20)24 Z Dra.........19(22)24 TW Dra......23(28)31D</td>
</tr>
<tr>
<td>2013 Jan 31 Thu</td>
<td>V367 Cyg.L03(<<)07D del Lib......05(11)07D U Cep......07(11)07D V367 Cyg.D18(<<)21L RZ Cas......D18(16)19 Z Vul.......D18(22)18L RS CVn......L20(19)25 TV Cas......20(24)28 RW Tau......21(25)27L</td>
</tr>
<tr>
<td>2013 Feb 1 Fri</td>
<td>TV Cas.......00(05)07D V367 Cyg..L03(<<)06D Z Dra......04(06)07D HU Tau......D18(21)25 RZ Cas......19(21)23 Z Per......20(25)27L</td>
</tr>
<tr>
<td>2013 Feb 2 Sat</td>
<td>TX UMa......D18(17)22 Y Psc......D18(18)20L TV Cas......D18(20)24 TW Dra......18(23)28 U Cep......18(23)28 AI Dra......20(21)22 RZ Cas......23(26)28</td>
</tr>
<tr>
<td>2013 Feb 3 Sun</td>
<td>Z Vul.......03(09)07D RW Tau......D18(20)24 HU Tau......19(23)26L Z Dra......21(23)26 U CrB......L22(26)30D X Tri.........24(26)24L</td>
</tr>
<tr>
<td>2013 Feb 4 Mon</td>
<td>SW Cyg......00(06)06D AI Dra.......00(02)03 RZ Cas......04(06)06D TV Cas......D18(15)19 Z Per......21(26)27L X Tri.........23(26)24L</td>
</tr>
<tr>
<td>2013 Feb 5 Tue</td>
<td>del Lib......L02(03)06D U Sge......L04(04)06D AI Dra.......05(06)06D Z Dra......06(08)06D U Cep......08(11)06D TV Dra......D18(19)24X U Cep......09(11)06D</td>
</tr>
<tr>
<td>2013 Feb 6 Wed</td>
<td>TV Cas......00(11)06D RW Tau......D18(14)19 RZ Cas......D18(16)18 Z Dra......D18(16)19 Z Tri.........22(24)24L</td>
</tr>
<tr>
<td>2013 Feb 7 Thu</td>
<td>del Lib......05(11)06D S Equ......L06(10)06D RZ Cas......18(20)23 U Cep......18(23)28 X Tri.........21(24)24L HU Tau......22(26)26L Z Dra......23(25)27 Z Per......23(28)27L</td>
</tr>
<tr>
<td>2013 Feb 8 Fri</td>
<td>TV Cas......02(06)06D Z Vul......L03(06)06D TW Dra......D18(14)19 SW Cyg.D18(20)22L TX UMa......D18(20)25 AI Dra......19(21)22 X Tri.........20(23)24L RZ Cas......23(25)27 SW Cyg......L24(20)26</td>
</tr>
<tr>
<td>2013 Feb 9 Sat</td>
<td>X Tri.........20(22)24L TW Cas......21(26)30 HU Tau......23(27)26L</td>
</tr>
<tr>
<td>2013 Feb 10 Sun</td>
<td>AI Dra.........00(01)03 RS CVn......03(09)06D RZ Cas......03(06)06D U Cep......06(11)06D Z Dra......D18(18)21 X Tri.........19(22)24L</td>
</tr>
<tr>
<td>2013 Feb 11 Mon</td>
<td>Z Per.........00(05)03L TW Dra......04(09)06D AI Dra.......05(06)06D TV Cas......D18(21)25 TX UMa......D18(22)27 X Tri.........18(21)23 RW Tau......22(27)26L</td>
</tr>
<tr>
<td>2013 Feb 12 Tue</td>
<td>Z Dra.........00(03)05 HU Tau......00(04)02L del Lib......L01(03)06D U Sge......L03(<<)04 X Tri......D18(20)23 U Cep......D18(23)27</td>
</tr>
<tr>
<td>2013 Feb 13 Wed</td>
<td>Z Vul......L02(04)06D SW Cyg......04(10)06D TV Cas......D18(17)21 X Tri......D18(20)22 RZ Cas......D18(20)22 TW Dra......24(29)30D</td>
</tr>
<tr>
<td>2013 Feb 14 Thu</td>
<td>Z Per.........02(06)03L del Lib......04(11)06D U CrB......04(10)06D S Equ......L06(07)06D X Tri......D18(19)21 Z Dra......D18(20)22 RW Tau......D18(22)26L TX UMa......19(24)28 AI Dra......19(21)22 RZ Cas......22(24)27 RS CVn......22(28)30D</td>
</tr>
<tr>
<td>2013 Feb 15 Fri</td>
<td>U Sge......L03(08)06D U Cep......06(10)06D X Tri......D18(18)21</td>
</tr>
<tr>
<td>2013 Feb 16 Sat</td>
<td>AI Dra.........00(01)03 Z Dra......02(05)06D RZ Cas......03(05)06D V367 Cyg..04(48)06D X Tri......D18(18)20 V367 Cyg.D18(48)20L TW Dra......19(24)29</td>
</tr>
</tbody>
</table>
2013 Feb 17 Sun
V367Cyg..L02(24)06D
TV Cas......03(08)06D
AI Dra.......05(06)06D
RW Tau......D18(16)21
X Tri.........D18(17)19
Y Psc........D18(20)19L
U Cep........D18(22)27
SW Cyg......D18(23)21L
V367Cyg..D18(24)20L
TX UMa....20(25)30
U CrB.........L21(21)27
SW Cyg......L23(23)29

2013 Feb 18 Mon
V367Cyg..L02(00)06D
Z Vul........L02(02)06D
V367Cyg..D18(00)20L
X Tri.........D18(16)19
Z Dra.............19(22)24
TV Cas.......23(27)30D

2013 Feb 19 Tue
del Lib......L01(02)06D
V367Cyg.L02(<<)06D
V367Cyg..D18(<<)20L
RZ Cas.......D18(19)22
TW Dra......D18(20)25
RS CVn.......L19(24)30

2013 Feb 20 Wed
Z Dra..........04(06)06D
U Cep........05(10)06D
TV Cas.......18(23)27
AI Dra...........19(20)22
RZ Cas........22(24)26
TX UMa......22(27)30D

2013 Feb 21 Thu
U CrB........02(08)06D
del Lib........04(10)06D
S Equ.........L05(04)06D
Y Psc..........D18(14)19
AI Dra.........24(25)26

2013 Feb 22 Fri
RZ Cas.......02(05)06D
U Sge........L02(02)06D
SW Cyg......D18(13)19
TW Dra......D18(15)20
TV Cas......D18(18)22
U Cep.........D18(22)27
Z Dra.........21(23)26

MARCH

2013 Mar 1 Fri
AI Dra.......05(06)06D
RS CVn......D19(14)20
Z Dra.........D19(18)21
TV Cas.......20(24)28

2013 Mar 2 Sat
TX UMa...02(07)06D
Z Vul.......03(09)06D
U Cep.......05(09)06D
HU Tau......D19(16)20
TW Dra......20(25)30D

2013 Mar 3 Sun
Z Dra 01(03)05
SW Cyg..D19(17)20L
RZ Cas.......D19(18)20
TV Cas.......D19(20)24
U CrB.......L21(16)22
SW Cyg......L22(17)23

2013 Mar 4 Mon
U Sge......L02(05)06D
Z Per......D19(14)19
HU Tau......D19(18)22
U Cep......D19(21)26
AI Dra.......19(20)21
RZ Cas........20(23)25

2013 Mar 5 Tue
del Lib....L00(02)06D
TV Cas.....05(09)06D
AI Dra.........19(20)22
RZ Cas........21(23)26
SW Cyg.L22(27)30D
Z Dra..........23(25)28

2013 Mar 6 Wed
U Sge.......L01(00)05D
Z Per.........D19(14)19
HU Tau.....D19(18)22
U Cep.......D19(21)26
AI Dra..........19(20)21
RZ Cas.........20(23)25

2013 Mar 7 Thu
V367Cyg.L01(38)05D
Z Vul.......01(06)05D
Z Dra........02(05)05D
del Lib......03(09)05D
U Cep.......04(09)05D
AI Dra......04(06)05D
Z Per........D19(16)21

2013 Mar 8 Fri
SW Cyg......00(06)05D
V367Cyg.L01(14)05D
TW Dra......D19(16)21
HU Tau......D19(20)24L
RW Tau.......20(25)24L

2013 Mar 9 Sat
V367Cyg..L01(<<)05D
TV Cas......02(06)05D
RZ Cas.......D19(18)20
U Cep.......D19(21)26
Z Dra........19(22)24

2013 Mar 10 Sun
V367Cyg..L00(<<)05D
S Equ.......L04(09)05D
Z Per........D19(17)22
AI Dra.......D19(20)21
HU Tau......D19(22)24L
RZ Cas........20(22)25
TV Cas.......21(26)29D
RS CVn......22(28)29D

2013 Mar 11 Mon
U Sge......L01(00)05D
Z Dra.........04(06)05D
RW Tau......D19(20)24L
AI Dra.......23(25)26

2013 Mar 12 Tue
del Lib......00(01)06D
TV Cas......D19(17)21
U Cep.......D19(21)25

2013 Mar 13 Wed
AI Dra.......04(06)05D
RZ Cas.......05(08)05D
Z Per........D19(18)23
U Cep.......04(09)05D
SW Cyg......D19(20)20L
TV Cas.......D19(21)25
HU Tau......19(23)24L
SW Cyg......L22(20)26
X Tri...........22(24)22L

2013 Mar 14 Thu
TW Dra......01(06)05D
del Lib......03(09)05D
RZ Cas.......05(08)05D
Z Per........D19(18)23
U Cep.......04(09)05D
TV Cas.......D19(17)21
X Tri...........21(24)22L
HU Tau......21(25)24L

2013 Mar 15 Fri
RZ Cas.......D19(17)19
RS CVn...D19(23)29D
X Tri...........20(22)22L
<table>
<thead>
<tr>
<th>Date</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Mar 16 Sat</td>
<td>Z Dra......D19(17)19, Z Per......D19(20)25L, AI Dra......D19(20)21, X Tri......19(22)22L, RZ Cas......19(22)24, TW Dra.....21(26)29D, HU Tau.....22(26)24L</td>
</tr>
<tr>
<td>2013 Mar 17 Sun</td>
<td>Z Vul.......L00(02)05D, U Cep.......04(08)05D, S Equ......L04(06)05D, SW Cyg.....04(10)05D, TX UMa...D19(15)19, X Tri......D19(21)22L, Z Dra......23(25)28, AI Dra......23(25)26, RZ Cas......24(26)29</td>
</tr>
<tr>
<td>2013 Mar 18 Mon</td>
<td>TV Cas......03(08)05D, X Tri......D19(20)22L, del Lib......L23(25)29D, HU Tau.....23(27)23L</td>
</tr>
<tr>
<td>2013 Mar 19 Tue</td>
<td>AI Dra......04(05)05D, RZ Cas......05(07)05D, X Tri......D19(20)22L, U Cep......D19(20)25, TW Dra.....D19(21)26, Z Per......D19(21)24L, RW Tau......22(27)24L, TV Cas......23(27)29D</td>
</tr>
<tr>
<td>2013 Mar 20 Wed</td>
<td>TX UMa...D19(16)21, Z Dra......D19(18)21, RS CVn......D19(18)25, X Tri......D19(19)21L, U CrB.......L19(23)28, SS Cet......20(24)20L</td>
</tr>
<tr>
<td>2013 Mar 21 Thu</td>
<td>U Sge......L01(03)05D, del Lib......02(08)05D, X Tri......D19(18)21, TV Cas......D19(23)27, SW Cyg..L21(24)29D</td>
</tr>
<tr>
<td>2013 Mar 22 Fri</td>
<td>Z Vul.......L00(00)05D, Z Dra......01(03)05D, U Cep......03(08)05D, X Tri......D19(17)22, TV Dra.....D19(17)20, AI Dra......D19(20)21, RZ Cas......D19(21)23, RW Tau......D19(21)23L, Z Per......D19(23)24L</td>
</tr>
<tr>
<td>2013 Mar 23 Sat</td>
<td>X Tri......D19(17)19, TX UMa...D19(18)22, TV Cas......D19(18)22, SS Cet......D19(24)20L, AI Dra......23(25)26, RZ Cas......23(26)28</td>
</tr>
<tr>
<td>2013 Mar 24 Sun</td>
<td>S Equ......L03(02)05D, U CrB.......04(09)05D, U Cep......D19(20)25, Z Dra......D19(20)23</td>
</tr>
<tr>
<td>2013 Mar 25 Mon</td>
<td>AI Dra......04(05)05D, RZ Cas......04(06)05D, RS CVn......D19(14)20, RW Tau......D19(16)21, Z Per......D19(24)24L, del Lib......L23(24)29D, V367 Cyg..L23(53)29D</td>
</tr>
<tr>
<td>2013 Mar 26 Tue</td>
<td>Z Dra......02(05)05D, TX UMa...D19(19)24, SS Cet......D19(23)19L, V367 Cyg..L23(29)29D, Z Vul......L24(22)27</td>
</tr>
<tr>
<td>2013 Mar 27 Wed</td>
<td>U Sge......L00(<<)03, del Lib......02(07)05D, TX UMa...D19(21)25, AI Dra......D19(20)26, RZ Cas......23(25)28</td>
</tr>
<tr>
<td>2013 Mar 28 Thu</td>
<td>U Sge......L00(<<)03, del Lib......02(08)05D, TW Dra.....02(07)05D, AI Dra......D19(20)21, RZ Cas......D19(20)23, Z Dra......19(22)24, Z Per......20(25)24L, V367 Cyg..L23(<<)25</td>
</tr>
<tr>
<td>2013 Mar 29 Fri</td>
<td>TV Cas......00(05)05D, Z Vul......03(09)05D, Z Per......L04(01)05D, U Cep......D19(20)24, TX UMa...D19(21)25, RZ Cas......23(25)28, AI Dra......23(24)26</td>
</tr>
<tr>
<td>2013 Mar 30 Sat</td>
<td>RS CVn......02(09)05D, Z Dra......04(06)05D, TV Cas......20(24)28, TW Dra.....22(27)28D, SW Cyg...21(27)28D, U Sge......01(06)04D, U CrB......01(07)04D, S Equ......L03(<<)04D, RZ Cas......03(06)04D, AI Dra......04(05)04D, Z Per......22(27)24L, Z Vul......L23(20)25</td>
</tr>
</tbody>
</table>

FROM THE DIRECTOR

Continued from page 1

T Cassiopeiae

Contributors: C M Allen, G W Salmon, J Toone, R C Dryden

roger.pickard@sky.com
CHARGES FOR SECTION PUBLICATIONS

The following charges are made for the Circulars. These cover one year (4 issues). PDF format subscriptions are £3.00 per year. Make cheques out to the BAA, and send to the Circulars editor (address on back cover); or you can now pay on-line.

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Europe</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAA Members</td>
<td>£5.00</td>
<td>£6.00</td>
<td>£8.50</td>
</tr>
<tr>
<td>Non-Members</td>
<td>£7.00</td>
<td>£8.00</td>
<td>£10.50</td>
</tr>
</tbody>
</table>

Pay On-line: From the BAA home page: http://britastro.org/baa/, click “Shop” centre top of page, and in the panel on the right hand side click “Section Newsletters”. (Could members using this method also notify the editor: sim_jan@btinternet.com, to ensure they receive their circulars.)

The charges for other publications are as follows. Make cheques out to the BAA and please enclose a large SAE with your order.

<table>
<thead>
<tr>
<th>Order From</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopic Charts</td>
<td>Free</td>
</tr>
<tr>
<td>Binocular Charts</td>
<td>Free</td>
</tr>
<tr>
<td>Eclipsing Binary Charts</td>
<td>Free</td>
</tr>
<tr>
<td>Observation Report Forms</td>
<td>Free</td>
</tr>
<tr>
<td>Chart Catalogue</td>
<td>Free</td>
</tr>
<tr>
<td>Observing Guide to Variable Stars</td>
<td>£5.00</td>
</tr>
<tr>
<td>CCD Guide</td>
<td>£7.50</td>
</tr>
<tr>
<td>Binocular Booklet</td>
<td>£2.50</td>
</tr>
<tr>
<td>CD-ROM of the last 3 items</td>
<td>£7.50</td>
</tr>
</tbody>
</table>

Charts are downloadable from the VSS web pages at http://www.britastro.org/vss/chartcat/wfb.php

For more information, please visit our web pages at http://www.britastro.org/vss

CONTRIBUTING TO THE CIRCULAR

If you would like to prepare an article for consideration for publication in a Variable Star Section Circular, please read the Notes for Authors, published on the web pages at: http://www.britastro.org/vss/circs.htm; reproduced in full in VSSC132 p 22, or contact the editor (details on back cover) for a pdf copy of the guidelines.

If you are unsure if the material is of a suitable level or content, then please contact the editor for advice.

The deadline for contributions to the next issue of VSSC (number 155) will be 7th February, 2013. All articles should be sent to the editor (details are given on the back of this issue).

Whilst every effort is made to ensure that information in this circular is correct, the Editor and Officers of the BAA cannot be held responsible for errors that may occur; nor will they necessarily always agree with opinions expressed by contributors.

Printed by RAMPrint 01604 233677
SECTION OFFICERS

Director
Roger D Pickard
3 The Birches, Shobdon, Leominster,
Herefordshire HR6 9NG
Tel: 01568 708136
Email: roger.pickard@sky.com

Secretary
Bob C Dryden
21 Cross Road,
Cholsey,
Oxon, OX10 9PE
Tel: 01491 652006
Email: visual.variables@britastro.org

Chart Secretary
John Toone
Hillside View, 17 Ashdale Road,
Cressage, Shrewsbury, SY5 6DT.
Tel: 01952 510794
Email: EnootnhoJ@aol.com

Binocular Secretary
Melvyn Taylor
17 Cross Lane, Wakefield,
West Yorks WF2 8DA
Tel: 01924 374651
Email: melvyndtaylor@tiscali.co.uk

Nova/Supernova Secretary
Guy M Hurst
16 Westminster Close, Basingstoke,
Hants, RG22 4PP
Tel and Fax: 01256 471074
Email: Guy@tahq.demon.co.uk

Eclipsing Binary Secretary
Des Loughney
113 Kingsknowe Road North,
Edinburgh EH14 2DQ
Tel: 0131 477 0817
Email: desloughney@blueyonder.co.uk

Database Secretary
Andy Wilson
12 Barnard Close, Yatton,
Bristol, BS49 4HZ
Tel: 01934 830 683
Email: andyjwilson_uk@hotmail.com

Recurrent Objects Co-ordinator
Gary Poyner
67 Ellerton Road, Kingstanding,
Birmingham, B44 0QE.
Tel: 07876 077855
Email: garypoyner@blueyonder.co.uk

Circulars Editor
Janet Simpson
Goatfield Cottage, Furnace, Inveraray,
Argyll, PA32 8XN
Tel: 01499 500234
Email: sim_jan@btinternet.com

Webmaster
Gary Poyner
(see above)

TELEPHONE ALERT NUMBERS

Nova and Supernova discoveries
First telephone the Nova/Supernova Secretary, Guy Hurst: 01256 471074
If only answering machine response, leave a message and then try the following:
Denis Buczynski 01862 871187,
Glyn Marsh 01624 880933, or
Martin Mobberley 01284 828431.

Variable Star Alerts
Telephone Gary Poyner: 07876 077855