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Babylon: Linear Measures of Celestial Angles and an Observatory
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     new paragraph p. 28 re Armant

Abstract

The paper examines Babylonian records, from the 1st millennium B.C., of planets 
passing fixed stars and specifically their up/down differences in linear cubits. It 
shows they were using the top of a gnomon as a foresight around which the observer 
moved on non-circular arcs, where the ratio of degrees per cubit was 2.5° (azimuth). 
Particularly near the horizon they were able to ensure close alignment in longitude 
between the star and the planet. The up/down measurements were then almost 
identical to the distance between the two bodies, using a straight rule. Finally an area
north of the Western Court of the Southern Palace is identified as a possible site of 
the observatory. Appendix A gives a worked example and Appendix B looks at other 
earlier developments in the region. It is followed by a Timeline and Index.

This study is based on the surviving Babylonian records of planets passing fixed stars in 
the years from –418 to –73 BC .1 The collection includes 1049 passages, where the 
up/down differences were recorded in linear units with a maximum of 6 cubits and a 
minimum of 1 finger (1/24th cubit). There were also 27 records of similar before and after 
differences.  The recorded information was laconic with an up/down report for the year
 –418 reading simply ‘Month II, night of the 9th, Mars was 4 cubits below  Leonis’.2

Not all the possible combinations of fingers and cubits are represented. There were certain
preferred values with rounding errors running from +/- ½ finger, for distances under 6 
fingers, to +/- 6 fingers for those above 4 cubits. In percentage terms such errors reach 
+/- 50% with a minimum of about +/- 3%. For distances below 1 cubit, the percentage is 
between 7 % and 50% and above 1 cubit between 3% and 8%.

There are gaps in the longitudinal coverage of the Normal Stars and, consequently, in 
declination. In terms of azimuth, the gaps, near the horizon, can be seen in Figure 2.

Professor Jones concluded that the up/down cubit values were related to differences in 
latitude and found the mean ratio of degrees (latitude) per cubit to be about 2.3°, which 
lies between the two ancient norms of 2° and 2.5°.

Ptolemy, in his criticism of the data, provided clues about how the measurements were 
made:

In general, observations [of planets] with respect to one of the fixed stars, when taken 
over a comparatively great distance, involve difficult computations and an element of 
guesswork in the quantity measured, unless one carries them out in a manner which is 
thoroughly competent and knowledgeable. This is not only because the lines joining the 
observed stars do not always form right angles with the ecliptic, but may form an angle of 
any size (hence one may expect considerable error in determining the positions in latitude 
and longitude, due to the varying inclination [to the horizon frame of reference]); but also

1 Jones, A., A Study of Babylonian Observations of Planets Near Normal Stars, Arch. Hist. Exact. Sci. 58 
(2004) pp.475-536. I am very grateful for Professor Jones giving me access to his Collection A and also to 
my son, Geoffrey, for help with the drawings and his patience.
2 Sachs A.J. and Hunger H., Astronomical Diaries and Related Texts from Babylonia, Vienna 1988, Vol. I, 
p.63



because the same interval [between star and planet] appears to the observer as greater 
near the horizon, and less near mid-heaven;[footnote] hence, obviously, the interval in 
question can be measured as at one time greater, at another less than it is in reality.

[footnote] This appears to be the only reference to the effect of refraction (if that is what it is) in the 
Almagest, despite its obvious relevance to the observations of Mercury’s greatest elongation.…3

Clearly he considered they were thinking in terms of the ecliptic, but were also assuming 
lines of longitude and latitude were always at right angles.

To investigate how and what they were measuring two main assumptions were made:

1. The observer used a linear measuring rod to determine the up/down or before/after 
position of the planet in relation to one of the 28 so-called Normal stars. He did 
this by aligning one end with the star and the other point with the planet, using the 
top of a vertical gnomon as a foresight (Figure 1).4 The rod may have been hand-
held or fixed in a rest. For each passage, the ratio of degrees (latitude) per cubit 
was converted to DTOG, the distance of the observer’s eye from the top of the 
gnomon.5 The mean ratio of 2.3° per cubit implied that his eye was about 25 cubits
from the top of the gnomon, which equates to ca. 13 metres and gives an idea of 
the size of the device, assuming a cubit of about 52 cms. Any errors in 
measurement and recording, including the not inconsiderable rounding errors, are 
accumulated within the DTOG value.

2. In 96% of the surviving records the difference in longitude (planet less star) was 
between –3.3°/+3.8°. Consequently the distance between the two bodies would be 
only marginally greater than their difference in latitude. By repeated iterations 656 
passages (63% of the surviving records) were found where the distance between 
the two bodies was within 0.2% of the recorded up/down distance in cubits.6 The 
margin of 0.2% is small but it equates to a 3.6° difference in the before/after 
positions, if a rectangular co-ordinate system was used, as Ptolemy indicated.7 

Professor Jones calculated the ecliptic co-ordinates of the outer planets for midnight and 
those of the inner planets about 4 hours, either before or after midnight.8 No adjustments 
were made either to these celestial co-ordinates or for refraction.

Appendix A has a worked example of the calculations for one passage.

3 Toomer G.J., Ptolemy’s Almagest, Duckworth, London, 1984, p.121.
4 The main justification for such an arrangement is that it brings the measuring scale close to the observer. It 
is not essential as the observer could be at the centre of the device with the scales about 13m away, but in 
that case it is hard to accept the ‘measurements’ as much more than estimates.
5 DTOG, distance from top of gnomon, equals 1/sine(ratio degrees per cubit)
6 Varying the altitude of the two bodies changes the linear distance between them. Out of the 128 passages 
with up/down distances of 4 fingers or less and rounding errors greater than 12.5%, only 29 had the distance 
apart within 0.2% of the recorded value.
7 Using plane trigonometry, Cosine (3.6°) = 0.998.
8 Jones A., op cit. p.481 gives UT 21 for the outer planets and either 17 or 1 UT for the inner planets.



Before and After Alignment

There has been considerable discussion about their ability to measure in ecliptic co-
ordinates.9 Of the 656 passages 59% were most closely aligned in longitude particularly at 
lower altitudes. In 78% of these passages, the longitude difference (planet less star) was 
less than 1°, compared with 63% of all surviving records. Other passages were better 
aligned in R.A. (34%) or even azimuth (7%) (Figure 2). This confirms Professor Jones’s 
conclusion that they were thinking in ecliptic co-ordinates, but, it now appears, their 
alignments, in longitude, were closer at lower altitudes. The mean altitude of the stars for 
the passages, best aligned in longitude, was 7.5° and, for the others, 16.6°.

Positions of the Observer’s Eye

The passages, best aligned in longitude, were sorted to the order of the star’s azimuth, in 
the west and the east. The relationships between azimuth and, separately, the north/south 
and east/west cubit co-ordinates of the eye of the observer are shown in figure 3. 

Surprisingly the relationship between azimuth and the north/south co-ordinates is very 
close to linear, with each cubit corresponding to 2.5° of azimuth, which implies that the 
paths of the observer were neither circular arcs around the gnomon nor straight lines.10 
Instead those paths must have been stepped arcs.11 This provides a good indication of the 
intended paths of the observer in the east and west.12 However, in  practice, within 20° of 
due east/west, the divergence from a straight line is less than 1 cubit and could well have 
been ignored, if a straight line was more acceptable. 

The observer’s position in the vertical is generally within 6 cubits of the top of the 
gnomon, but drops to 10 or 11 cubits in places (Figure 4). There is a notable anomaly 
about 5 cubits north of the gnomon, where, particularly in the east, the observer’s eye 
drops down to about 10 cubits. This anomaly also marks a sharp fall in the number of 
passages, when the observer is between 5 and 10 cubits north of the gnomon.

From the foregoing we can deduce that there was a structure around the gnomon which 
facilitated observations where the observer’s eye was within 6 cubits of the top of the 
gnomon. 

There are other aspects brought out by the moving mean lines in figure 4.13

9 Hunger H. & Pingree. D. Astral Sciences in Mesopotamia, Brill, 1999, p.269.
10 This also confirms that they were thinking in terms of 2.5° per cubit.
11 I am most grateful to P. Starkey, a neighbour and mathematician, for providing the modern polar equation 
for such curves: r sin θ = (Ymax .2/π) θ, where r is radius and θ the angle in radians. Spiral curves may have 
been used in Egypt at an early date (see Appendix B). A similar linear relationship, but closer to 2.6° 
(azimuth) per cubit, was found for those passages best-aligned in R.A., indicating that for those passages the 
observer was slightly closer to the gnomon. As they were also higher, it implies that the observer’s path, in 
cross-section, was like a steep-sided bowl.
12 A target ratio of 2.5° per cubit implies the distance to the top of the gnomon on the east/west line was 
about 23 cubits (1/22.9 = Tan 2.5°). From there it is simple to calculate thirty-six cubit steps, each of 2.5°, to
the north and south. With due north/south being at 0,36/0,-36 and due east/west at ca. 23,0/-23,0. The 
intermediate positions at 45° are +/-18, +/-18. With 36 steps the sum of each successive hypotenuse totals 
44.6 cubits, so along that path each cubit averages about 2°. In practice the steps may have been irregular 
and larger than the 1 cubit assumed. If used to measure altitude, rather than azimuth, such a curve would 
resemble the recumbent crescent moon, a common motif in Mesopotamia, but an impossible position for the 
moon in practice. 
13 Moving means help to smooth out erratic data, but depend on how the data was sorted. In figure 4 it was in
order of N/S cubits, but in figure 6 in order of azimuth.



A Possible ‘Observatory’

To visualise the observatory, we might think of a 6 cubit gnomon standing above the flat 
roof of a building with the much lower areas corresponding either to the ground outside or
to interior open courtyards. In the Southern Palace at Babylon, there are many such 
courtyards, but there is an area north of the Western Court of particular interest. Before the
whole of the area had been excavated, a part to the north-east was described as follows:

The houses of this part of the palace are remarkable for the strength of their walls and the
admirable regularity with which they are laid out. Court 38 is reached by a passage-way 
from the Principal Court, the latter through a hall, as in the case of 25, 26 and 27, opens 
with three doors on to court 38. Between the doors, pillars project from the walls and 
correspond with others on the opposite side. They must have served as piers to support 
arches for the ceiling, although it is difficult to make out clearly what was the object of 
this structure.

 The roof of this area of the palace was evidently intended to support more weight than 
usual. It may appear improbable that an observatory would be rectangular, but we can 
perhaps think of it as being like graph paper. Today we use Mercator charts, with 
rectilinear lines of longitude and latitude, and also Ordnance Survey maps with a 
rectangular grid. It is a question of balancing the pros and cons of such arrangements.

There are circles in the sky which produce straight lines, aligned with the cardinal 
directions, on the ground. Firstly there is the meridian. Secondly a prime purpose of an 
observatory would have been the measurement of time both at night and during the day. In
a horizontal sundial the hour-line for 6 hours to transit runs due west/east through the pole.
Thirdly the shadow of the sun, at the equinoxes, runs due west/east just north of a 
gnomon.14 We thus have three perfectly straight lines – the meridian, the hour-line for six 
hours to transit and the shadow of the sun at the equinoxes – and we have already noted 
that the stepped arcs run sensibly due north/south within 20° (8 cubits) of due east/west. 
Together these lines form a near rectangular outline for observations.

Just south-east of court 48 is a short length of wall of abnormal width (1.8m), which is 
aligned with a passage leading from the northern wall of the palace.  None of the other 
similar passages, running due south, from the oblique northern wall, is so short.15 The 
wide wall and the short passage may perhaps have marked the meridian. 

The short thick wall links two substantial east/west walls, about 5m apart; one just south 
of court 48 and the other north of the transverse corridor.16 

14 With a gnomon of 1 cubit, on a latitude of 32.5°, the pole would be 1.57 cubits to the south and the 
equator 0.637 to the north, with the distance between them being 2.207 cubits.
15 The oblique northern wall of the palace is stepped, both vertically and horizontally, and is inclined about 
17° from east/west. The 17° of azimuth matches that quoted for the limits of the path of Anu in Walker C. 
(editor), Astronomy before the Telescope, British Museum Press, 1996, p.48. It corresponds to the 
rising/setting of stars with a declination of +/- 14.3°, which is close to the 15°, for the Path of Anu, quoted in
Hunger H. and Pingree D., Astral Sciences in Mesopotamia, Brill, Leiden, 1999, p.61.
16 The two east/west walls may perhaps be linked to anomalies in Figure 4. Such walls would prevent the 
observer going lower for higher altitudes, and would oblige him to move nearer the gnomon. The most 
northerly of the two walls is aligned to the well-head NW of court 47 and may have carried a water conduit.



The stepped curves, with each north/south cubit corresponding to 2.5° of azimuth, would 
fit within the north/south width of this part of the palace, with the gnomon about midway 
between the two east/west walls. However, as we will see, there are reasons to believe it 
was perhaps ca. 2m further north. In figures 5 & 6 it is on the east/west wall just south of 
the two courts, 39 and 48. 

Figure 5 shows:
the paths of the tip of the sun’s shadow at the solstices, equinoxes and for those stars that 
transit overhead, 
the hour-lines around the pole, 
the stepped arcs, 
bearings around the gnomon and 
radial distances from the gnomon17 Radial distances formed part of an older table of 
shadow lengths.18

Celestial and associated phenomena influenced the layout in this area of the palace. 
Junctions are marked in figure 5 by small circles of radius 0.5 cubits or about 26 cms.

The following table refers to the room immediately north of court 39.

Table 1.
Corners of Room to north of court 39

Location
SW 3rd hour-line from transit
Exit to south Azimuth 45° and Stepped arc at 18(N),18(E) cubits from gnomon
SE Radius 30 cubits and Winter solstice shadow
NE Azimuth 45°
Exit to north Radius 30 cubits
NW Azimuth 30° and Stepped arc at 24(N) cubits from gnomon

With a 6 cubit gnomon, the line of the equator would lie above the passage linking the two
courts and the pole would be on the more southerly of the two parallel walls. The equator 
coincides with the anomaly noted earlier (Figure 4). Furthermore the transit shadow of the 
sun at the winter solstice would fall on the end of the short passage running south from the
city wall. The NW corners of both courts would be on a bearing of 45° from the gnomon.

The proposed site seems plausible, even though having the gnomon in such a position is 
fraught with problems, caused by the many towers and turrets, particularly those around 
the palace itself. They were slender, but high and closely spaced, so that they would 
appear like a solid wall, if viewed obliquely.19

Figure 2 shows that there was an almost complete dearth of passages, near the horizon, 
between bearings of 6° and 22° from due east/west. To the south-east the large gateway 

17 Berossus is considered to have invented the hemicycle sundial around 300 B.C. (Cousins F. W., Sundials, 
Redwood Press, Trowbridge, 1972,  p. 72.)
18 Hunger H. & Pingree D., Mul-Apin, Horn, 1989. p 153/4. The shadow length table is discussed in 
Neugebauer O., A History of Ancient Mathematical Astronomy, Vol. I, Springer-Verlag, Berlin, 1975, p 
544/5, by Bremner R.W., Die Rolle der Astronomie in den Kulturen Mesopoatmiens, Symposium, Graz, 
1991, pp 367/382 and by Hunger H. & Pingree D., Astral Science in Mesopotamia, Brill, 1999. pp 79/82. 
See also Appendix B, page 39.
19 The turrets were closely spaced and with a width of about 6.5m. Viewed from within an angle of about 50°
there would be no visible gaps between adjacent turrets.



between the Central and Principal Courts is on a bearing 12/19° from due east and could 
well have blocked the view to the horizon. To the south-west there is the Western Citadel, 
where maybe there was a similar high structure.

To check alignments at night, the observer would need to get his eye down to base level. 
A schematic drawing shows the palace roof as flat, but with the major north/south walls 
projecting above roof level.20 In the area of the proposed observatory, the tops of all the 
walls were, perhaps, raised to 1.5 cubits above roof level with the gnomon 6 cubits higher 
still.21 The main level at 6 cubits below the top of the gnomon would receive the shadow 
of the sun and, at night, the eye of someone sitting on the roof itself would be in the same 
plane.22

 An additional platform, 3 cubits below the top of the gnomon, would enable the observer 
to measure on the horizon. He could further adjust the level of his eye by standing on a 
block or by kneeling23 In the two open courts the observer would be able to go much 
lower.

Even if the observer was meant to stick to the designed paths, there would be nothing to 
prevent him making observations wherever he could get a sight of both the gnomon and 
the celestial bodies.

The moving means of the positions (Figures 4 & 6)), show that in both the west and east, 
the observer’s path was generally close to the stepped arcs.  On both sides, near the path of
the sun at the summer solstice, the positions of the observer are closer to the gnomon, than
indicated by the stepped curve (Figure 6). There may, perhaps, have been some sort of 
track marking the shadow of the sun at that extreme, preventing the observer going deeper 
for higher altitudes and obliging him instead to move nearer the gnomon. In such cases 
Ptolemy’s remark about the same interval (angle) appearing ‘to the observer as greater 
near the horizon, and less near mid-heaven’ would apply.

Passages, where the depth was more than 6 cubits, are shown by heavy lines, notably in 
the north and due east and west of the gnomon (Figure 6). In the north-west the observer 
was at a significant depth over what appears to be a large area of solid brickwork, but it 
could have been modified without leaving a trace in the archaeological record.24 On the 
east the depth was also significant in the south-east corner of court 39. 

The anomaly, 5 cubits north of the gnomon, can be linked to the two courts and lends 
credence to the suggestion that those passages, well-aligned in longitude, were recorded 
around a gnomon in the position indicated. This is difficult to prove though, especially in 

20 Koldewey R., The Excavations at Babylon, London, Macmillan, 1914 fig. 87. Shows cross-section 
through walls north of the Southern palace, with the roof of the palace shown schematically. Fig. 43 shows a
birds’ eye view of Southern Palace, with only some of the main walls rising above roof level.
21 The gnomon would be 7½ cubits above the roof, which would shift the line of the sun’s equinoctial 
shadow, from the centre of the passage, to the gnomon side of the passage wall.
22 In the XVIII century the Jai Prakash Yantra at Jaipur similarly had complimentary sections of the two 
bowls cut away to allow the observer to get his eye into the plane of the bowl. (Rajawat, D.S, Jaipur’s Jantar 
Mantar, Jaipur, date ?, pp 49/53)
23 Analysis of the depths below the top of the gnomon suggests there was a very slight preference for certain 
depths:  –0.5, -2.5, -3.5, -5, -6, -7, -9 and -11 cubits, but only 18% of passages were below -6 cubits.
24 Koldewey R & Wetzel F, Die Konigsburgen von Babylon, WVDOG54, Leipzig 1931,  Die Gebaude 39 
und 48 Nordlich vom Westhof. I am grateful to Helene Lambrinudi and Andreas Kindler for  translations 
from the German.



the face of evidence that observers were employed by the Temple of Esagil, a long way 
south of the Southern Palace.25

 
Measurements

Finally we must consider what they were actually measuring..

The 656 passages were divided into six groups, according to the alignment of the two 
bodies in longitude, R.A or Azimuth and then whether they were observed in the east or 
west. For each passage the angle, in the vertical plane between the star and planet, was 
calculated. This angle has been termed the alignment angle and figure 7 shows how it 
varied with longitude. The two dashed curves are calculated values, assuming perfect 
alignment in longitude and with the lower of the two theoretical bodies at an altitude of 2°.

The rod, shown schematically in figure 8, would serve to check the alignment in longitude
and to measure differences in latitude, assumed to be at right-angles.

Conclusions

They were using an observatory, originally laid out for the accurate determination of 
azimuth in linear cubits (2.5° per cubit) measured along lines parallel to the meridian. The 
observer would move along non-circular arcs, around the gnomon, and would be at a 
varying distance from the top of the gnomon. Consequently the ratio of degrees (except 
azimuth) per cubit would also vary.

In attempting to work in ecliptic co-ordinates, they recognised the difficulties involved. To
reduce these to a minimum, they aimed to measure latitude only when they were sure the 
two bodies were closely aligned in longitude and this was easier close to the horizon. With
close alignment in longitude, the distance between the two bodies would represent their 
difference in latitude.

The layout of the area to the north of the Western Court seems to have been influenced by 
celestial and related phenomena. It is possible, but not proven, that the measurements 
could have been made there.

25 Hunger H. & Pingree D. op.cit p.139.



Appendix A – worked example

Table 2.
1 Data from Collection A26

2 Star Planet Difference Planet less Star
or common value

3  Virgo Year –270/10/21 Mars
4 172.316 Longitude °27 172.052 -0.264
5 -1.906 Latitude ° 1.098 3.005
6 Up/Down cubits 1.5
7 Degrees Latitude per cubit 2.003
8 Calculated Values for two bodies

Spherical trigonometry
9 DTOG cubits - 1/Sine(row7) 28.608
10 172.197 R.A. ° (Latitude 32.5° and Obliquity of

ecliptic 23.728°)
173.156 -0.958

11 1.336 Declination ° 4.197 2.861
12 1.659 Altitude ° found by iteration 4.000 2.341
13 271.115 Hour-angle ° (transit 360°) 272.074 1.222
14 -0.528 Azimuth from 90° -2.432 -1.904
15 Sun’s Longitude > planet’s, so passage in

east & observer to west of gnomon
16 Calculated Positions – Observer’s eye

Plane trigonometry
17 -28.594 X cubits West (-) East (+)

=DTOG x Cos (row12) x Cos (row 14)
-28.512 -0.082

18 -0.264 Y cubits South (-) North (+)
=DTOG x Cos (row12) x Sine (row 14)

-1.211 -0.948

19 -0.828 Z cubits below horizontal
=Row 20 x Sine(row 12)

-1.991 -1.163

20 28.596 Horizontal radius from gnomon
(X2+ Y2)

28.538

21 Horizontal distance between two positions –
cubits

= (Diff X2 + Diff Y2)

0.951

22 Total cubits between two positions
= (Diff X2 + Diff Y2 + Diff Z2)

Compare with recorded 1.5 cubits row 6

1.502

23 Bearing in horizontal plane from North ° =
ArcTan(Diff Y/Diff X)

-85.042

24 Absolute alignment angle in vertical plane
between two positions °

= ArcTan(Diff Z/row 21)

50.726

26 A.J.Sachs & H.Hunger, Astronomical and Related Texts from Babylonia Vol I, p.351, recorded ‘Night of 
the 19th, last part of the night, Mars was 1 ½ above  Virginis’.
27 Longitude and Latitude of star and planet assumed unchanged over short difference in time



Appendix B  - Earlier Developments in the Region.

1. Horizon Alignments.

The supposed temple at Tell es-Sawwan is an early example, from the middle of the 6th 
millennium BC, of a building oriented about 45° from the cardinal points.28 Later at 
Teleilat Ghassul (level IV) in Palestine there is a remarkable wall painting of an eight-
pointed star.from about –4000.29 

Other bearings are evident at Nabta Playa and Eridu.

Nabta Playa.

At Nabta Playa there are alignments of megaliths radiating around a central point. Their 
bearings are in three bands A (26/31°), B (117/122°) and C (127/131°).30 In turn these can 
be divided into narrower ranges, but here we will look at the positions of the individual 
stones as, with a fixed central point, it only takes one marker to define an alignment.

For each megalith, the differences in longitude (converted to great circle degrees) and 
latitude, from the central point, were divided by a factor.31  A unit of 0.00194°, 
corresponding to c. 215 metres, gave significant results for bands A and B.32 Of the 17 
positions no less than 8 had longitudes (expressed in linear units) equating to either whole 
or half units. Of the radii from the central point 8 equated to either whole or half units. 
This cannot be accidental. It would appear that they were determining positions by any 
two of the following: the radius from the centre and the easterly or northern component 
from the centre. In other words any two sides of a right-angled triangle.

Band C does not fit this analysis, which is not surprising as Malville et al concluded it was
‘problematic because of migration of the stones.33 However one stone (C5) is still of 
interest, as its unit co-ordinates are 2.7 (S) and 3.6 (E) and with a radius of 4.5 units from 
the centre. The alignment corresponds to the hypotenuse of a Pythagorean triangle with 
sides in the ratio 3, 4 & 5. In this case the unit would be 193.5m.(10% smaller than 
mentioned above). There is the possibility that one of the attractions for the placing of the 
central point (A) was its position relative to C5, which was described as a ‘dispersed 
cluster of blocks’ with a large original size of ‘about 2.0 x 1.5 x 0.3 m.’34

Bands A and B are largely confined to two 3.4° segments, between bearings determined 
by the ratio ½, the tangent of 26.6° and the sine of 30°, measured from due North (A) or 

28 Edwards I.E.S et al, The Cambridge Ancient History, Vol.1, Part 1, 1980, p.274, Fig. 21.
29 Edwards, op. cit, Vol. IV, p.522 and plate 14c.
30 Malville J.M. et al, Astronomy of Nabta Playa, in Holbrook J. et al, African Cultural Astronomy, Springer 
2008, p.137.
31 Brophy T.G and Rosen P.A, Satellite Imagery Measures of the Astronomically Aligned Megaliths at 
Nabta Playa, Mediterranean Archaeology and Archaeometry, 2005, Vol.5, No.1, pp15-24, Table 1.
32 The calculation is based on a great circle degree of 111 km. According to Petrie (Encyclopaedia Britannica
1951), the Egyptians had a khet (100 cubits) with a length of 52.37m. 4 khets would be 210m. Subdivisions 
smaller than a half, were probably tenths rather that quarters or thirds. There is some indication that the unit 
length rose from about 211m in –4400 to 218m in –3600. If we assume that the three A positions A1, A2 & 
A3 were all intended to be 4 units north and 2 units east of the centre, the units would range from 0.00185 to
0.00195°.
33 Malville op. cit, p.139
34 Wendorf F. and Malville J.M, The Megalithic Alignments  in Wendorf F. and Schild R, The Archaeology 
of Nabta Playa, 2001, p.494.



due East (B). The two segments are 90° apart. The bearing of the rising sun at the winter 
solstice would have been 26.1°, south of due east, in -4700

From the table below, we can see that the rising of Sirius, the brightest star in the sky, 
would have aligned with the stones in the B band from about –4700 to –3700, but with a 
gap from –4200 of nearly 400 years.35 An adjustment of nearly 2° was then needed.   

Similarly the rising of Arcturus would have matched the megaliths in the A band from –
4450 to –3600, but with the largest gap from –4275 to –4100. To put these dates in 
perspective, it is thought the Egyptian Civil calendar with 365 days in the year was 
established around –4500.36

Table 3. Individual Megaliths at Nabta Playa
Ref Size Position Difference Linear measures

Lat. Long Lat Long Lat Long Radius Year BC
Cu.m. Degrees degrees Degrees

x 100
Gt. Circle

degrees x 100
units Units units

Centre A 22.5080 30.7257 Arcturus
A2 3.7 22.5157 30.7298 0.77 0.38 4.0 2.0 4.4 4450
A3 0.7 22.5155 30.7297 0.75 0.37 3.9 1.9 4.3 4430
A1 2.9 22.5158 30.7299 0.78 0.39 4.0 2.0 4.5 4400
A0 0.4 22.5136 30.7288 0.56 0.29 2.9 1.5 3.2 4275
A4 1.4 22.5149 30.7297 0.69 0.37 3.6 1.9 4.0 4100
AX 0.4 22.5164 30.7306 0.84 0.45 4.3 2.3 4.9 4075
A5 1.4 22.5131 30.7288 0.51 0.29 2.6 1.5 3.0 3920
A6 ? 22.5135 30.7291 0.55 0.31 2.8 1.6 3.3 3850
A7 0.5 22.5131 30.7289 0.51 0.30 2.6 1.5 3.0 3800
A8 1.0 22.5127 30.7287 0.47 0.28 2.4 1.4 2.8 3720
A9 1.0 22.5121 30.7284 0.41 0.25 2.1 1.3 2.5 3600

Sirius
B7 0.5? 22.5065 30.7283 -0.15 0.24 -0.8 1.2 1.5 4700
B6 0.1 22.5063 30.7288 -0.17 0.29 -0.9 1.5 1.7 4460
B5 ? 22.5061 30.7293 -0.19 0.33 -1.0 1.7 2.0 4200
B3 5.2 22.5059 30.7300 -0.21 0.40 -1.1 2.0 2.3 3820
B1 ? 22.5058 30.7303 -0.22 0.42 -1.1 2.2 2.5 3750
B4 ? 22.5060 30.7299 -0.20 0.39 -1.0 2.0 2.3 3700

C5 0.9? 22.5027 30.7333 -0.53 0.70 -2.7 3.6 4.5

This analysis indicates that 12 of the 17 megaliths in bands A and B were placed in three 
short periods of greater activity: –4450/ –4400 (4), -4100/-4075 (2)–3850/-3700 (6). Only 
two were placed in the 300 years from –4400 to -4100 (exclusive), which matches the 
three centuries, when the lowest number of samples were found for radiocarbon dating 
(Figure 8B). We can perhaps see this period as being one of low human activity in the area
and is consistent with the megaliths in the A & B bands being placed individually to point 
to the rising of Arcturus or Sirius.

The megaliths would also align with other less bright stars. For example Sirius and α 
Centaurus rose at the same point on the horizon around –4400 and thereafter markers 
which had served previously for Sirius would serve for α Centaurus, as it moved lower in 
the sky.

35 Star data from SkyMap Lite 2005.
36 Wells R.A. in Walker C. (Editor), Astronomy before the Telescope, British Museum, 1996, p.34



The distance from the central point would vary as they sought integer values for linear 
measurements of any two of the radius, latitude or longitude, to determine the precise 
position

In general they seem to have been less tolerant of imprecision in the case of Arcturus than 
Sirius. Consequently there are more alignments for the former, possibly because the slow 
movement northwards of the rising of Sirius was already well known. Unlike Sirius, the 
rising of Arcturus was moving southwards, which may have attracted closer attention.37 
The first four alignments for Arcturus are near 26.6°, with a tangent of 0.5.  The difference
in bearing for these four was less than one degree, which suggests an aim for high 
precision. 

Eridu.

At Eridu not all the many levels of temple construction were perfectly rectangular and the 
early walls varied significantly in bearing.38 At Napta Playa the lines of stones, radiating 
around a centre, point solely to the eastern horizon, but at Eridu the walls can be seen as 
aligned between opposite points on the western and eastern horizons (Table 4).

Table 4. Walls at Eridu
Level Walls Stars

SE NW NE SW α CMa  α Cen α Lyr κ Ori
Bearings - degrees Year Longitude/Horizon Azimuth-degrees

18 30/21039 30/210
17 30/210 29/209 126/306 127/307 -5100 8/127
16 30/210 30/210 126/306 126/306 -4900 10/126 189/25
15 35/215 39/219 130/310 130/310 -4700 13/125 155/121 192/26 354/129
11 37/217 37/217 127/307 127/307 -425040 161/124 199/29 0/126
9 37/217 37/217 127/307 127/307 -3750 167/127 205/32 7/122
8 40/220 41/221 132/312 133/311 -3000 177/132 210/36
7 40/220 40/220 131/311 131/311 See footnote 31
6 53/233 53/233 143/323 143/323 -2700 181/226 220/323
Level 6

excluded
Corresponding Declinations

Degrees
18/7 rising 48/41 49/41 -30/-35 -30/-36
18/7 setting -48/-41 -49/-41 30/35 30/36 Zigpu stars in bold (on left)

We can distinguish four distinct groupings:

1. In each of the first three levels, 18/16, there is at least one wall oriented 30°/210°. This
suggests a subdivision of the horizon into 30° segments, with the two middle 
segments, totalling 60° in the east and west, corresponding to slightly more than the 
annual range of the sun at the horizon.41 The 30°/210° alignment would complete the 
30° segments and would mark the centres of the two bands, which the sun does not 

37 The rising of Arcturus moved 5° southwards in 850 years and of Sirius 4.7° northwards in 1000 years
38 The alignments were taken from Edwards I.E.W., Gadd C.J., Hammond N.G.L. (Editors), The Cambridge 
Ancient History, CUP, 1980, Figures 24 & 25, pp 335 & 338. Figure 24 shows levels 18 to 8 and although 
small has the advantage of having just one indication of north for all levels.  In figure 25, the other two 
levels, 7 & 6, each have their own north pointer. In this analysis level 7 with an indicated date around –3100 
would be out of sequence with level 8.
39 Three of the walls are aligned 30/210°, while one, the most northerly, is about 29/209° 
40 α Cma and α Cen would have had the same declination c. –4400, which falls between levels 15 and 11.
41 In the middle of the 6 millennium BC, with the obliquity of the ecliptic 24.2°, the theoretical range would 
be 29.4° either side of due east/west.



reach and which are not circumpolar. The divisions between the major 60° segments 
lie either side of an alignment 60/240° or 120/300°.

2 In levels 11 and 9 the buildings are more closely rectangular and oriented in 
accordance with the angles in the simplest Pythagorean triangle, with sides in the ratio 
3,4,5.42 One wall at level 17 is similarly aligned.43 The same angles are also evident in 
the last level (6) but transposed. Six of the nine identified levels had walls in this or the
previous group.

3 Excluding levels 18 and 6, the remaining seven have at least one wall on a bearing of 
126/132° in the east and 306/312° in the west. These two ranges correspond to objects 
with complementary declinations of –30/-35° and +30/+35°, either rising in the east or 
setting in the west. The latter range would include what were later termed zigpu stars, 
which transit overhead and ideally had a declination of 30.5° at Eridu.44 The former 
range would, at different times, have included two of the brightest stars as at Nabta 
Playa.

Of the five brightest stars Canopus (α Car) and Arcturus would have been too low or too 
high, leaving Sirius, α Cen and Vega (α Lyr). The brightest star, Sirius, would have risen 
on a bearing of 127° in –5100 and 126° in –4900, when it would have been opposite, in 
longitude, to Vega and so six months apart. As Sirius rose, Vega was 21° above the 
western horizon. Later Sirius became too high, but α Cen would have been in range (levels
11, 9 & 8). This leaves a gap between levels 15 and 11, which could have been filled by a 
star of Orion, such as Saiph (k Ori), which, although not particularly bright, is part of a 
very obvious constellation and was also opposite the sun at the autumn equinox. An 
alternative would have been the brighter Rigel (β Ori)

With levels 17 and 16 two hundred years apart, we might estimate the date of level 18 as 
about –5300. Overall the range would be from then until level 6 in –2700. Postgate gives a
range from c.-5000 to c.-3000.45 Bienkowski and Millard give a span of ‘at least 1500 
years from 5500  BC or earlier’.46 The dates suggested here, although not coincident, are 
similar to those indicated by these two authorities. We can probably have the greatest 
confidence in those for levels 17 and 16, associated with the rising of Sirius, levels 11 or 9
and 8 associated with the rising of Rigel Kentaurus and level 6, associated with the setting 
of Vega.47

Egyptian 5-pointed star.

In the coffin lid tables (see below) the epagomenal stars are grouped together, but we 
should not rule out the possibility that at some earlier stage a single day was inserted into 
the calendar every 72 days.

The star hieroglyph with five spokes, implying the division of a circle into 72° segments, 
is known from the earliest Dynasties.48 It is not the easiest form to draw, so there must 
have been a good reason for its adoption.49 It is shown with one spoke vertical and the 
others on either side at angles of 72° and 144°. Table 5 gives details of five stars which, at 

42 The angles are 36.9° and 53.1°
43 It is possible that there may have been some lack of differentiation between the various levels.
44 Hunger H and Pingree D, MUL-APIN, An Astronomical Compendium in Cuneiform, Archiv fur 
Orientforschung, Horn, Austria,1989, pp 141/4. 
45 Postgate J.N., Early Mesopotamia, Routledge, London, 1996, p.25 caption to figure 2:2.
46 Bienkowski P and Millard A. Dictionary of the Ancient Near East, British Museum, London, 2000, p.107.
47 Other than for level 6, Vega seems to have been consistently mis-aligned by about 4/9°.
48 Petrie H, Egyptian Hieroglyphs of the First and Second Dynasties, Quaritch, London, 1927.



Abydos around –3900, would have, almost simultaneously, been on the horizon. The two 
rising stars, λ Tel and 110 Her, are not particularly bright.

Table 5. Calculated for –3900 at Abydos (Lat. 26.2°)
Star Magnitude R.A. Declination Horizon

Azimuth
Diff Azimuth

α UMi 1.86 322 58 343 71
γ Gem 1.93 19 0 271 72
α Car -0.62 66 -58 199 71
λ Tel 4.85 184 -34 128 71

110 Her 4.19 220 32 54 75

It would not have taken long to realise that α UMi spent about one fifth of a day below the
horizon and was separated from β UMa by a similar length of time. These two northern 
stars would have facilitated the visual subdivision of the area around the pole into five 
equal segments.

Therefore a plausible alternative justification for the hieroglyph would be that the spokes 
are separated by 72° in time. α UMi with a declination of 58.7° would rise and set 36° 
(time) from lower transit and 144° from upper transit. It would be 72° below the horizon 
between setting and rising, which would be 36° apart in azimuth.

α Umi would have had such a declination around –3900 and at the same time it and β 
UMa would have been 72° apart (R.A.). Other stars with about the same declination would
have been γ Dra and one of those in the Corona Borealis constellation. As α Umi set, α 
Car was also setting, which provides additional support for the five-pointed star being 
related to the rotation of α Umi around the pole.50 The suggested date of 
–3900 is commensurate with the –4500 given by Wells for the determination of the length 
of the year as 365 days.51

Table 6. Calculated for –3900 at Abydos (Lat. 26.2°)
Star Magnitude R.A Difference Declination Horizon

Azimuth
Time to

nearest transit
Long

approx
degrees degrees degrees degrees degrees degrees

α UMi 1.86 322 83 58 17 35 7
β UMa 2.34 34 72 62 8 17 57
α2 CVn 2.84 94 60 64 n.a. n.a
α CrB 2.21 167 72 56 21 42 140
γ Dra 2.24 240 73 61 12 5 186

A few decades later α UMi would spend 69° below the horizon, which would match the 
70 days spent in the duat, which traditionally is associated with the time that Sirius (α 
CMa) is too near the sun to be visible. Maybe there was more than one manifestation of 
the 70 days in the duat.

By this time the five-pointed star might have come to represent the daily passage of time, 
around the pole. The rising and setting of a Umi (R.A.322.5) could have served as a 

49 Roaf. M, Cultural Atlas of Mesopotamia, Equinox, Oxford, 1990, p.70. shows a pictographic sign for a 
star with eight spokes around –3100.
50 At this time α Umi and α Car would have set 143° apart in azimuth.
51 Wells R.A.,  op.cit. p.34.



control, with the other four stars being a Uma (25), e Uma (105),  y CrB (171) and e Dra 
(253.5). The successive differences in R.A (in brackets). range from 62° to 83°, so would 
not have been at all precise.

In the Pyramid texts, the word for hours is determined by three stars.52 Sticking with α 
Umi, the other two could have been β Cva (86) and η Her (202.5). The differences in R.A 
would be 116.5°, 120° and 123.5° and, if correct, would indicate much greater precision. 
This is speculative, but seeks to explain how the measurement of time could have reached 
the high level of precision built into Kafre’s and later pyramids (see below).

There is further reference to a five-pointed star below under Hierakonpolis.

Alignment of Mastabas at Saqqara 

The northerly alignments of all but one of the long sides of the mastabas of the 1st Dynasty
at Saqqara are in one of two groups 330/341° and 355/358°.53 The first is roughly parallel 
to the Nile, which along this stretch flows towards 335°. 

With this relationship to the river, it would not have gone unnoticed that around 
–2920, when α UMi was at upper transit, the setting of Corona Borealis was aligned with 
the river (Table 7). We see that constellation as a crown, but then it might have been 
likened to a bowl or the sign N41/42, a ‘well full of water’.54 On setting its ‘rim’ would 
have been level with the horizon on a bearing between 331/341°, matching the first of the 
two groups of mastaba alignments.55 At the same time α CMa would have been 2° below 
the horizon and about to rise.

Table  7.  Data for –2920 on a latitude of 30°, α Umi at upper transit
Star Magnitude R.A. Decl Horizon

Azimuth
Altitude

degrees degrees degrees degrees
ι CrB 4.98 190 52 335 0.1
ε CrB 4.14 188 49 331 -3.5
γ CrB 3.8 183 49 331 -5.0
α CrB 2.21 180 51 333 -4.9
β CrB 3.65 179 53 337 -3.0
θ CrB 4.06 181 55 341 0.1

α UMi 1.86 330 63 N/a 57.0
α CMa -1.44 47 -22 115 -2.0

52 Clagett M, op.cit. Vol.II p.49. He presumes that this was linked to the Civil Calendar with 12 months in 
three seasons.
53 One mastaba is aligned 10° west of north, about midway between the two groups.
54 Gardiner Sir A., Egyptian Grammar, Oxford University Press, 3rd Edition, 1969, p. 492.
55 Over the years in question, precession would not have played a significant role in the spread of the 
mastaba alignments.



2. A Portable Sketch from Saqqara – Pythagorean triangles and a spiral.

From Dynasty 3 (c.2600 BC), we have a sketch of an arc, which Marshall Clagett 
described as ‘a kind of descriptive geometry born of practical measurement…’. 56 There 
may be rather more to it than that. 

The crucial unknown is the distance, assumed to be equal, between the Y ordinates. 
Clagett followed Wolff in taking it to be 28 digits or 1 Royal cubit. However, if it was 
actually 24 digits, the co-ordinates would be 0,98, 24,95, 48,84, 72,68 and 96,41.57 The 
sketch then incorporates three Pythagorean triangles, with their long sides parallel to the X
axis (Figure 9):

14, 48, 50 (7,24,25) linking points 1 and 3,
54, 72, 90 (3,4,5) linking points 2 and 5,58 
30, 72, 78 (5,12,13) linking points 1 and 4.

The coordinates (96,41) of the fifth point suggest that there was a fourth triangle with 
sides 9,40,41 below it.

An Egyptian architect with Pythagorean set squares could delineate curves in integer 
rectangular co-ordinates, which a builder could readily follow. In this example the 
architect drew a rough arc on a piece of limestone, to which he added his previously 
calculated Y ordinates.

But what was the curve he had in mind? Points 1,3,4 & 5 lie close to a circle, but its centre
(–10,-30) is well away from the vertical axis through point 1, and point 2 does not fit.

Two other possibilities are:

1.The curve is an approximate protractor for angles 15°, 30°, 45° and 67.5°.

2.The curve is part of a similar spiral to that used at Babylon, where the X co-ordinate is 
proportional to the angle below the horizontal at point 1 (see Table 8).59 With the 
exception of point 3, the others are close to a ratio of 7.5° per cubit of 24 digits. This 
value, known as a part, or 48th of a circle, belongs ‘to an early sequence of primitive 
angular measures’, according to Neugebauer.60

The 3,4,5 triangle for points 2 and 5 fits the second alternative better than the first. (see 
last column in Table 8).

56 Marshall Clagett, Ancient Egyptian Science, Vol. III, 1999, pp. 78/79, 109 note 68 and 462. The curve is 
not a single circular arc as the radius for the points 1, 2 & 3 is less than that for points 3, 4 & 5. 
57 The Egyptian short cubit contained 6 palms and 24 digits.
58 The 3,4,5 and 5,12,13 triangles intersect at 45,79.25 and 60,68. The 11 digits just below point 2 are 
divided precisely into 4,3,4 digits. The triangle of 3,4,5 digits would be, in palms, ¾, 1. 1 ¼, which is similar
to how it appeared in the very much later Baylonian tablet Plimpton 322 (see below).
59 This is a similar arrangement to that at Babylon for measuring azimuth, where the ratio was 2.5° per cubit.
60 Neugebauer. O., A History of Ancient Mathematical Astronomy, Springer-Verlag, 1975, Part Two, p.671.



Table 8. Analysis of Five Points in Sketch
Point X Y Angle from

Vertical at
origin 0,0

Assumed
Target

Difference Angle below
horizontal at

point 1

Divide X by
3.2

Difference

digits digits Degrees degrees degrees degrees digits degrees
1 0 98 0 0 0 0 0 0
2 24 95 14.18 15 -0.82 7.1 7.5 -0.4
3 48 84 29.74 30 -0.26 16.3 15 +1.3
4 72 68 46.64 45 +1.64 22.6 22.5 +0.1
5 96 41 66.87 67.5 -0.63 30.7 30 +0.7

Spirals are known in Egypt from the 1st and 2nd Dynasties, so it is worth examining how 
they might relate to the Horus Eye Fractions, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, which were 
represented by parts of an eye and used for volumes of grain.61 The first quadrant of an 
Archimedian spiral would have an area of just under 32 square units, if the radius for the 
90° position was 11 units.62 This area would split into two halves along a line parallel to 
the short axis, 5 units from the origin and a similar line 11/10 units from the origin would 
delineate 1/16th of the total area (Figure 9b). Between these two lines there would remain 
7/16ths, of which 1/4 would be represented by a circle with a radius of 1.6 units.63 The 
form of the individual fractions are roughly similar to the ancient glyphs, except for 1/8 
and 1/32 above and below the circle respectively.  

Problem 10 in the Moscow Mathematical Papyrus refers to a basket with an area of 32 and
to this being half an egg shell.64 It seems therefore that the egg consisted of the two initial 
counter-rotating quadrants of Archimedian spirals, so that in terms of area an eye was half 
an egg, divided lengthwise and a basket was also half an egg, presumably with the egg 
divided at right angles.65 Evidently the units were not the same!

The basket also had an opening, presumably a diameter, of 4.5 units, which using the 
Eyptian method of calculation would have an area of 16 sq.units, so was twice the size of 
the 1/4 Horus eye fraction and consequently was 1/4 of the egg. If the opening had a 
depth, rather than a diameter, of 4.5 units then it would equate to the distance from the 
origin to where the egg was widest.

3. Hierakonpolis, Pyramids and Horizontal Hour-lines.

It will be shown below that, by the Pyramid age, they had mastered the use of horizontal 
dials to measure time. At Hierakonpolis they may have already started on that long 
journey of discovery.

61Petrie H, Egyptian Hieroglyphs of the First and Second Dynasties, Quaritch, London 1927. Plate XXXVi 
shows 5 spirals (855/859) from the Royal tombs and Hierokonpolis. They rotate both clockwise and 
anticlockwise, so could readily have been put together to form an egg. She also showed eyes (plate III) with 
one (64) enclosing a circle.
62The area of the first quadrant is πn2//12, where n is chosen as 11. This  is the smallest integer value that has 
another integer, 5, for the division of the total area into halves and another integer, 3, for the distance from 
the origin to the centre of the circle. It could be readily rescaled.
63In the drawing it is shown as touching the lower edge of the eye, but there ought to be a small gap to allow 
the two areas either side to count together as 1/32.
64Gillings R.J., Mathematics in the Time of he Pharaohs, Dover, 1972, p 195
65Divided along a line parallel to the short axis produces two very different halves – one pointed and the 
other rounder. In this regard we should remember there were other similar Egyptian signs which look similar
to eggs and/or baskets.



Hierakonpolis Sites HK29A & HK29B, Narmer Palette and Armant.

Although the two adjacent sites are of a similar age, HK29B will be looked at first as it 
appears more experimental and less sophisticated than HK29A.

HK29B

The layout of HK29B reflects at least three variations of position and height of the 
gnomon; the western (green) and eastern (red) palisades and the radiating post holes 
(blue), shown in figure 8c2.66

The obliquity of the ecliptic was falling slowly from 24.1° in -4000 to 24.0° in -3000. At 
the winter solstice, the sun's declination would have been c.-24.1° in the first half of the 
4th millennium. At night someone following a star with the same declination would 
traverse the same path as the sun's shadow of the top of the mast.67

Green Layout.

 The line of the palisade, rather than being a smooth curve, is more like two straight lines, 
and this is brought out more clearly in Aziz et al where the further westward extension to 
the palisade shows up as a third straight section, offset slightly to the north.68 With a 
gnomon of 5.5m in the green position, the shadow of the rising mid-winter sun would be 
just south of the line of the western palisade, which hints at its purpose.69 To plot the path 
of a star, like the shadow cast by the sun, an observer ought to get his eye down to ground 
level, but it would be less awkward if he could track the star along the top of a low fence. 
However this would create its own problem: the paths at the top and bottom of the fence 
would not represent the same line of constant declination. A fence of 80cms in the green 
scheme would reduce the effective height of the gnomon from 5.5m to 4.7m. and the result
can be seen in figure 8c2. The dotted green line represents a constant declination of -25.1° 
on top of the fence: to the west it is further north and on the meridian further south than 
that for -24.1°, at ground level. Along the palisade, in the middle section, they are almost 
indistinguishable. That vertical section of palisade would represent declinations in the 
range -24.1°/-25.1°. Sirius ( α CMa) in -3680 had a declination of -25.1°, so could be 
taken as having a similar path to that of the sun at the winter solstice.

Red Layout.

The eastern section of palisade (red) is less straightforward. The western end is aligned 
with the rising of the mid-winter sun, with a gnomon of 4.0m in the position shown, and is
sensibly parallel to the western (green) palisade. However the eastern part has a significant

66Friedman R., Hierakonpolis Locality HK29A: The Predynastic Ceremonial Centre Revisited, JARCE 
Vol.45, 2009, pp79/103.  I am most grateful to Dr. Friedman for sending me a copy of her detailed paper, 
which permitted a closer analysis of the first two phases. The drawings are based on her figures 1, 8 and 9.
67Most of the relevant observations were well away from the horizon and above an altitude of 6° where 
atmospheric refraction is only about 0.14°. Consequently its effect on declination is small and has generally 
been ignored.
68Aziz A.M., et al, Remote Sensing at Hierakonpolis, Nekhen News 30, page 25. It seems they preferred 
successive straight lines to curves.
69The green palisade is now known to extend in the same direction for about 50m, further than shown in 
figure 82c2 (Private communication from Dr. Friedman)



change of direction and also, unlike the green palisade, continues further eastwards until it 
reaches the main (green & blue) meridian, but without showing the curvature there that 
one would expect.70 With a gnomon of just 1.4m this part of the palisade would match the 
'shadow' of a star with a declination of -29.6° (figure 8c2). 

The green and red layouts mark the transition from simply watching the shadows on the 
ground to observing them in the vertical plane of a palisade.

Blue Layout.

This more sophisticated layout is presumably later than the green or red.71    The principal 
line with eight post holes cuts the main meridian, 8.55m north of the gnomon (altitude 
29.2°, declination -35.7°) at the same post hole as the red line for -24.1°.72 73

The details of the most westerly 7 post holes of the principal line are set out in Table 9, 
where the most westerly and easterly have been numbered 14 and 7 respectively.74 They 
lie on a straight line, aligned with the point near the equator and east of the gnomon, 
where a large post hole is marked by a blue cross. This point is 2.24m north and 3.56m 
east of the gnomon and would be on the equator, if the gnomon height was 4.78m.75 

From the fifth column we can see that the radius from the gnomon is 135 units for position
14 and reduces in approximately 10 unit steps to 67 units for position 7.

The seventh column includes three simple tangent ratios for the altitude of positions 14, 11
& 7 and combining them with the distances of the post holes from the gnomon, we can 
calculate the height of the gnomon as 4.795m, 4.771m and 4,764m, averaging 4.78m. 

The estimated declination of about -35.7° is shown in the final column. This is for 
'shadows' on the ground, but we cannot rule out the possibility that the observer also 
climbed the posts to view nearer the horizon.

70At its northern end the main meridian has a large circular structure with a diameter of c. 1.6m,. It is 
mentioned by Hikade but without any indication of its function  (Hikade T.. Origins of Monumental 
Architecture: Recent Excavations at Hierakonpolis HK29B and HK25),  Might it perhaps have served as a 
podium for an observer watching the successive transit of stars across that meridian?
71In the red scheme the post holes are little more than 60cms apart, in the green it is slightly more and in the 
blue over 3m, along the principal -35.7° curve. Previously the use of 'a block with, in the centre, a vertical 
pole of eye height' was suggested as a moveable marker for celestial objects. (Bremner R.W., The Shadow 
Length Table in mul-Apin) Graz,1991, published in Galter H.D., Die Rolle der Astronomie, 1993, pp 
367/382. Hikade op.cit. mentions carved figures. Putting the two together perhaps the 'blue' holes are for 
fixed carved markers.
72The hole on the meridian for a declination of -35.7 would be 9/5 of the gnomon height from its base.
73 If this was insufficient justification for a post hole on the meridian, then it may also have served for            
   yet another gnomon for an unidentified fourth layout.
74With this numbering there appears to be a missing post at number 8.
75The ratio of 2.24 and 4.78 is 0.47 and corresponds to the tangent of the latitude of Hierakonpolis 25.1°. 
Expressed in units of 0.32m the position of the large post hole is 7 units north and 11.1 units east of the 
gnomon.



Table 9. Post Holes along principal line (-35.7° Decl), Gnomon Height 4.78m (14.94 units
of 0.32 m) No allowance for refraction.

No. West North Radius Radius in 
units of
0.32m

Apparent
Altitude

Simple
Tangent ratio

(altitude)

Estimated
height

gnomon

Declination

m. m. m. units degrees m degrees

14 -30.79 30.24 43.16 134.9 6.36 1/9 (6.34°) 4.795 -35.7

13 -28.31 28.18 39.94 124.8 6.86 -35.6

12 -26.07 26.21 36.97 115.4 7.41 -35.6

11 -23.22 24.00 33.40 104.4 8.19 1/7 (8.13°) 4.771 -35.5

10 -20.96 22.17 30.50 95.3 8.95 -35.9

9 -18.35 20.25 27.33 85.4 9.97 -35.9

7 -13.79 16.41 21.44 67.0 12.64 2/9 (12.53°) 4.764 -35.8

The seven post holes were carefully positioned along the straight line, with the most 
westerly three, particularly no. 13, are almost precisely 45° (azimuth) from the meridian.
The tangents of the altitudes of the most westerly and easterly are 1/9 (6.34°) & 2/9 
(12.53°).

 Radiating lines, dashed blue, around the post hole, marked by a blue cross, match the near
straight sections of constant declination, -38.3° and -31.7° and their inclinations to the 
equator are 42.25° and 34.3°, with tangents 0.91 and 0.68. These inclinations and modern 
declinations are linearly related and, given that the middle inclination for -35.7° is close to
4/5, it is possible the two outer ones were intended to be 9/10 (41.99°) and 7/10 (34.99°). 

The blue cross marks the point around which the 'shadows' of stars, with differing 
declinations, appear to rotate for part of their length.

If, at this stage, they had recognised the 'pole' on the ground, it would have been 10.2m to 
the south, but that area has not been excavated and, in any event, there does not appear to 
be evidence of an interest in measurements around the pole at this stage.76

They were well able to manipulate angles using ratios of their tangents, much as a roofer 
does to-day77. They also seem to have found a system for delineating lines of constant 
declination on the ground, albeit only over a limited range (-31.7°/-38.3°) and altitudes 
(6.3°/12.5°).

A lower altitude limit of 6.34°, on the principal line,  avoided the highest values for 
refraction close to the horizon, but nevertheless it would still have had a small measurable 
effect. We can be fairly sure of the intended altitudes for positions 14, 11 and 7, namely 
6.34°, 8.13° and 12.53°. At those apparent altitudes, the true altitudes would be closer to 
6.21°, 8.02° and 12.47°. Starting with an initial estimate of 35.7° for declination, we can 
76A possible exception is the principal blue line for -35.7° declination, where the most westerly post hole is 
61°, a little over 4 hours, from transit. The first seven post holes cover 10° or 40 minutes of time.
77  Draper J.T., The Steel Square applied to Roof Construction, The Technical Press Ltd., London, 1930. For 
116 different angles between 29.92° and 78.68° the author gives the tangent ratios, which an ancient 
Egyptian would have readily understood, once he had mastered 1/16ths of an inch.



calculate, marginally different, estimates for the true declination (-35.78°, -35.77° & -
35.74°, averaging -35.76°) for the three positions with simple ratios for altitude.78

With so many variables, including the height and position of the gnomon, it is impossible 
to be sure which stars might have justified the choice of the declinations identified. 
However their range is limited to -24.1°/-38.3° and it is quite likely the latter was chosen 
because its path would cross the meridian at a point twice the height of the gnomon from 
its base and not for the brightness of any particular star.79  This reduces the range to -
24.1°/-35.7°, containing four of the brightest stars (Table 10).  Firstly we should note how 
little the declinations changed over 150 years, so even if we could confidently identify the 
star, it would not closely define a date.  All that can be said is that at some point in the 150
years after -3700 each of these bright stars would have matched an identified declination, 
but it does not prove that this was when attention became focused on that particular 
declination. 

Table 10. Bright Stars within the band of declinations in the years -3700/-3550. Data from 
StarMap Lite 2005.

Scheme
&

Gnomon Height

Declination
Tan(Meridian

Altitude)  & respective
Declination

Bright Star/ 
Magnitude

Star Declination 
with observation at ground

level
 

-3700 -3600 -3550

Degrees Degrees Degrees Degrees

Red palisade
1.4m

-29.6
7/10  (-29.9)

β Ori/
0.17

-29.60 -29.04 -28.77

Green palisade
5.5m

-24.1/-25.1 α CMa/
-1.44

-25.18 -24.77 -24.58

Blue - Southern
4.78m

-31.7
13/20 (-31.9)

α Cent/
-0.01

-31.58 -32.07 -32.2

Blue - Main line
4.78m

-35.76
5/9  (-35.8)

α Crux/
0.77

-35.27 -35.61 -35.79

eps CMa/
1.5

-35.95 -35.57 -  35.41  

Star with near constant
declination

TYC 8169 1192 1
3.75

-35.54 -35.52 -  35.53  

Hierakonpolis is on a latitude of about 25.1° the tangent of which, 0.4684, can be 
considered as either 7/15 (0.46)  or a more precise 15/32 (0.4688), so we might expect the 
height of the gnomon to be divisible by either 15 or 32. The estimated height of the 
gnomon is 4.78m, which divided by 15 indicates a unit of 0.319m.

This analysis assumes the shadows were observed at ground level, but the observer could 
perhaps have climbed the vertical poles to get observations nearer the horizon, but this 
would have increased the influence of refraction. Assuming a perfectly horizontal horizon 
78These calculations ignore temperature and barometric pressure, so give only an approximate idea of the 
true declination, which is required if one is aiming to determine the year a particular star reached that 
declination.
79At a distance of 10 units a mast of 5 units would subtend an altitude angle of 26.57° and on a latitude of 
25.1° this would correspond, on the meridian, to a body with a declination of 38.33°.A similar value seems 
to define the northern boundary at HK29A.



and maximum refraction of 34 minutes, it would push the lower limit of declination to c.-
40°.

HK29A

Friedman divides the development of HK29A into three phases and here we will look at 
the first two. 

Phase 1 (c.-3500).

This phase is focused on a much wider range of declinations and specifically on the area 
of the 'pole' on the ground. Because some of the site has still to be excavated, we have to 
deduce the positions of certain key elements, including the pole, indirectly. 

The most southerly two rows of four post holes (a/d and e/h) are respectively aligned 
12.65° and 18.3° from east/west (Fig. 8d2).  The angles correspond to the smallest angle in
a Pythagorean triangle with sides in the proportion 9, 40 & 41 (12.7°) and to an angle, 
whose tangent is 1/3 (18.4°). The two lines converge to a point a little over 10m south of 
the mast (feature 16).80 

If the 9,40,41 triangle was scaled up to 18,80,82, then the unit of measurement would have
been about 324mm and the radius from the point of convergence for each of the four post 
holes (a/d) would be 82, 68, 57 and 47 integer units or 'feet'.81 These radii are the same for 
three (f/h) post holes in the second row.  The short sides of the Pythagorean triangle and of
its mirror image are shown dashed in figure 8d, with the short side of the mirror image 
passing close to the most westerly post hole (e) in the second row. The long side of the 
mirror image aligns approximately with the most westerly of the northern post holes (i), so
the line from the point of convergence is inclined about 25.4° to the east/west line.

Two holes (m & n) are aligned with the 'shadow' of a body with a declination of just over 
38°.82  The point of convergence of the two lines would correspond to the 'pole', if the mast
was 4.8m tall and was used as a gnomon.83 The line of the equator would be 2.25m north 
of the mast.84  Any 'shadows' of stars which crossed the two most southerly lines of posts 
together would transit together across the meridian. The most northerly posts (i/l) are not 
well aligned in this phase. The two western post pits (i & j) and the most easterly (k & l) 
lie north and south, respectively, of the east/west line through the mast, indicating greater 

80The two lines converge on a point about 10.25m south of the mast (feature 16). The latitude of HK29A is 
25.1°, whose tangent is 0.4684, almost exactly 15/32., which would suggest that they were using a linear 
unit of about 320mm (10.25/32), so that the height of the mast was about 4.8m or 15 units. This agrees with 
Friedman's description of a 'tall solitary pole...'. 
81This estimate of 324mm is 4mm greater than that deduced previously (footnote 80). Based on the radii, we 
can calculate the West and North coordinates from the pole as 80,18 - 66.3,14.9 - 55.6,12.5 - 45.9,10.3 units 
of 324mm.
82By 'shadow' of a star is meant the position of an observer's eye when using the top of the gnomon as a 
foresight to follow a star. The rising sun would cast an elongated shadow of the mast and the top would 
briefly appear on any vertical fence or wall around the courtyard. If the top of the mast carried an emblem, 
such as a hawk or scorpion, its shadow would appear on the fence or wall, before sliding down into the 
courtyard.
83 The distance of the equator from the mast,  2.25m, is equivalent to 6.9 or 7.0 units for a unit of 324 or 
320mm.
84The distance being (height of mast x 15/32). If the height was 15 units (see footnote 80) the distance would
be 152/32 or 7.03 units.



interest in that line than in the equator. There are several stars with declinations that would
align with the four post holes, but β1 Sco is notable because it would match position j and 
three other nearby stars would align with i, k and l at the same time (see Table 11).

In phase 1 much of the northern side of the courtyard is bordered by the gateway and Wall
Trench 1. The path of a star with a declination of -38° would cross the gateway, more or 
less tangentially .85  We have to consider the possibility that Wall Trench 1 was intended 
for a wall that would serve to raise the level for observations to the same as at the base of 
the mast, although if that was so, we would expect a change in direction at the meridian 
whereas, in fact, it continues until the end of the courtyard.

Table 11  Star data for -3500 from SkyMap Lite 2005 (all values in degrees).

Position Altitude Decl. Time to
transit

Possible Star
/magnitude

Altitude
star

Decl.
star

Time to transit
star

i 11.3 6.7 80.7 ν Sco/4.0 11.6 6.6 80.4

j 13.0 6.6 78.7 β1Sco/2.56 13.0 6.6 78.8

k 16.1 9.0 76.3 θ Lib/4.13 16.4 10.0 76.5

l 19.6 12.3 74.0 γ Lib/3.91 21.0 12.9 72.6

The coherence of so many positions suggests that they were indeed using the mast as a 
gnomon. On that basis we can calculate the paths of celestial bodies with various 
declinations (blue in Fig. 8d2), assuming the courtyard was sensibly level with the base of 
the mast. Any unevenness in the ground surface would divert the paths of constant 
declination from the calculated curves. 

We have seen above that for the two hour-lines radiating around the pole (a/d and e/h), 
they showed a preference for angles, which were either part of a Pythagorean triangle or 
had other simple  trigonometrical ratios. Therefore in Figure 8d the hour-lines are taken 
from Table 12.86

85Other parts of Wall trench 1 would match more closely the path of a body with a declination slightly above
-38°. In -3400 α1 Crux had a declination of -36.3°.
86Th calculation is Tan (Hour-line angle) = Sin (latitude) x Tan(Time to meridian)



Table 12 Hour-lines with simple trigonometrical ratios (angles and time in degrees)

Hour-line
angle to

the
meridian

Tangent, Cosine
(C) or

Pythagorean
triangle

Time
to

meridia
n

Comments

26.56 1/2 49.7 Western gate post & Star Decl. -38°, post holes m & n aligned
with declination path +38°.87 A star with a declination of -38.3°
would cross the meridian at an altitude of 26.6° (same as Hour-

line angle), so its horizontal distance to the base of the mast
would be twice the height of the mast.

36.87 3,4,5 60.5 Path Decl. -30° enters courtyard at salient point; Post hole d
aligned with declination path +30°

49.4 7/6 70 Mid winter sun & Sirius enter courtyard, declination -24°88;
bodies with declinations between11° & 24° enter courtyard

53.13 3,4,5 72.4 Time to meridian compatible with five pointed star (72°).89

Hour-line touches perimeter of courtyard in several places, so
includes a wide band of declinations. Declination +20° is close

to post hole l and altitude on meridian 45°, so distance from
base of mast equals its height.

60.0 (C) 1/2 76.2 Hour-line tangential to perimeter of courtyard between equator
and east/west line through mast

Points X & Y are 45° from the meridian, measured around the pole and mast respectively. 
They correspond to bodies with declinations of -27.3° and -35.0° and on the perimeter of 
the courtyard are 66.8° and 58.4° (time) from the meridian.

Phase 2. c. -3300.

On the northern side, the perimeter of the courtyard is now further south and towards the 
east is bordered by Wall 1, which partially coincides with the path of a body with a 
declination of c. -35° (Fig. 8e).90   Such a body would no longer cross the meridian twice 
the height of the mast from its base, but would be at an altitude closer to 30°, so the 
distance to the top, not the base, of the mast would be twice its height.

On the south, outside the courtyard, the realigned northernmost line of large post pits is 
c.23° to due east/west, which is comparable to the smaller angle in a Pythagorean triangle 
with sides in the ratio 5,12,13 (22.6°), scaled up by 6 to 30,72,78, with the four posts 30, 

87East of the gateway the path for a declination of -38° closely matches the line of Wall Trench 1, which 
suggests the possibility that the latter was the trench, not for a wall, but for a pathway raised to bring it to the
same level as the base of the mast, although in that case one might have expected it to stop or change 
direction at the meridian.
88Sirius and the mid-winter sun would have had similar declinations of c.-24.1° c. -3410 (Data from SkyMap
Lite 2005), but were well apart in R.A. (c.132°). This convergence in declination was probably also noticed 
at Newgrange in Ireland. O'Kelly C., Concise Guide to Newgrange, Houston, Cork, 2003 and see 
www.Mythical ireland.com. There is a book (not seen) The Newgrange Sirius Mystery by E.A. James 
Swagger.
89Petrie H., Egyptian Hieroglyphs of the First and Second Dynasties, Quaritch, London 1927, p.xxi, figures 
490/492, from the Royal Tombs.
90   Both ε CMa and α Lep had declinations of about -34.5° in -3300.



24, 20 & 16 integer units (323mm), north of the pole.91 The line cuts the meridian about 
7.6m south of the mast, indicating that in this phase the pole was nearer the mast, which 
was lower at c.3.56m. A little south of the four posts there is an almost parallel trench.

The constant declination paths for ±24° enter the courtyard 72° (time) from the meridian. 
For the mid-winter sun it is at the western apex and in mid-summer it is just below the 'll' 
of the 'Wall 2' label. Between these two extremes the hour-line for 72° runs roughly 
parallel to the longer arm of the brickwork, near the western apex, and then crosses the 
equator at the most easterly of the three indentations in the courtyard perimeter.92 

Evidently this indicator of time was of considerable importance and furthermore it would 
have been consistent with drawing stars with five points. It seems fairly certain that, by 
this stage, they were thinking in terms of six hours of 72°, with an average 'hour' of 12°. 
They were also exhibiting a closer interest in the line of the equator. There the 78° hour-
line would be tangential to the perimeter, and 6° from the 72° line, a difference of half an 
'hour' of 12°. The linear distance between the two would be about 6.56m or 20 units of 
328mm. The westernmost indentation would correspond to the 75° hour-line from the 
meridian and from Figure 8e, we can see that the hour-lines for 60° and 45° corresponded 
to the north-eastern side of the platform and to westernmost end of the perimeter, where it 
abuts Wall 1. Even if an average hour of 12° was top of their thinking they could also 
accommodate one of 15°. At the time of the pyramids, there was a standard hour (15°), 
measured along the equator (see below).

Table 13 summarises the various hour-lines and the points to which they are aligned. It 
would seem that by Phase 2, they were able to handle more sophisticated tangent ratios 
than in Phase 1.

91The size of the unit (323mm) agrees closely with that deduced for phase 1 (324mm), but slightly less well 
with the 320mm, which may indicate a slight error in the estimated positions of the pole. The calculated 
Western ordinates from the pole would be 72, 57.6, 48 & 38.4 units of 323mm.
92The 72° hour-line was closely bordered on the south by a protuberance on the brickwork near the western 
apex. Presumably this was to set the southern limit for this hour-line and might have been aligned with the 
appearance of the 'shadow' of Sirius. However the declination of Sirius was gradually rising and so would 
soon have rendered such a marker obsolete, possibly justifying the subsequent removal of all the brickwork.



Table 13  Hour-line angles and time to meridian, using 17/40 for sine(latitude), correct for 
25.15°

Desired
Time to

Meridian

Calculated
Hour-line
angle to
meridian

Approximate
Tangent ratio

Time to
meridian,

using tangent
ratio

Diff. Alignments93

degrees degrees degrees degrees

45 22.99 17/40    45 0 western end of abutment of courtyard & Wall 1

60 36.31 80/109  59.93 -0.07 north-east corner of platform

64 41.01 20/23   63.95 -0.05 north-west corner of platform

67 44.98 1/1     66.97 -0.03 perimeter west of platform & 45° from meridian

68 46.40 20/19  68.01 +0.01 salient point on courtyard perimeter

72 52.55 80/61   72.04 +0.04 centre western apex, -24° shadow enters courtyard
and eastern indentation on equator

73 54.22 40/29   72.87 -0.13 aligned to northern side of brickwork and eastern
indentation on equator

75 57.72 8/5    75.12 +0.12 aligns with several points on perimeter and western
indentation on equator 

78 63.39 2/1 78.00 0 tangential to perimeter on equator

80 67.47 12/5 79.96 -0.04 four post-holes

We have noted above that they appeared to have used linear units in the range 
320/324mm. The values differ by little more than 1%, which may be due either to errors in
our measurements or that, at the time, each 'surveyor', had his own set of measuring 
equipment and there was little desire for a single uniform standard.

On the south, outside the courtyard, the realigned line of large post holes is c.23.1° to due 
east/west and cuts the meridian about 7.6m south of the mast indicating that in this phase 
the pole was nearer the mast and the mast was lower at c.3.56m

With the two alignments in the same area from Phase 1 we can see how they were 
handling angles (Table 14).

93For hour-lines 75° and below, there are small indentations along the southern perimeter of the courtyard, 
although they may not all be significant. The two small indentations in the perimeter, north and south of the 
mast, presumably marked the meridian.



Table 14

Phase/row of
posts

Approx.
inclination to

east/west

Rounded
Tangent

(degrees)94

Pythagorean
Triangle

Time to transit

degrees degrees

1/southern 12.7 9/40 (12.7) 9,40,41 85

1/middle row 18.5 1/3 (18.4) 82

2/wall trench 2 20.5 3/8 (20.6) 81

2/ northern 23.1 5/12 (22.6)95 5,12,13 80

It seems clear that they were using simple ratios of the sides of right-angled triangles to 
define angles around the pole. We can therefore assume that similar 'nice' angles would be
used for other divisions crossing the courtyard. Five are shown in Figure 8e and in Table 
15, of which three are related to the line of the equator, which as shown below, was of 
particular interest at the time of the pyramids.

Table 15

Hour-line
angle to
meridian

Rounded
Tangent
(degrees)

Pythagorean
Triangles

Time to
transit

Comments

36.9 3/4 3,4,5 60.5 Northernmost point of platform

45 1/1 67.0 Western boundary of Pit Dynasty 1

53.1 4/3 3,4,5 72.4 Western end of Courtyard & on eastern indentation of
courtyard perimeter on Equator

60 96 76.2 Nearly tangential to courtyard perimeter & on
western indentation of perimeter on Equator

63.4 2/1 78.0 Tangential to courtyard perimeter on Equator

For an hour-line angle of 53.1°, the time to the meridian is a little over 72° or 1/5th of 
360°, which makes it compatible with a five-pointed star.

In phases 1 & 2, the height of the mast appears to have been about 4.8m and 3.6m 
respectively, but the midwinter sun would still have risen on the same bearing and 
consequently the shift in where the shadow of the mast entered the courtyard would only 
have changed by about 60cm. Consequently in the plans of the western apex, the outline 
does not change between phases 1 and 2.

Although the outline here is the same, there were significant changes within the perimeter.
In the early phase there was a cluster of post holes, which by the second phase had been 
94The Egyptians are known to have used the inverted tangent or seked, which can be seen as the length of the
sun's shadow, using a gnomon of unit height.
95It could also have been 90/4 or 22.5°
9660° angle equals the angle of each segment of a hexagon or it can be considered as 90°-30°. The sine of 
30° is 1/2, which is thought to have been of interest to the builders of the alignments at Nabta Playa.



replaced by a thick wall, facing to between the mast and the pole. The southern end of this 
wall turned to run irregularly towards the pole, before apparently stopping just before 
reaching an unexcavated area. This is in contrast to the short section of wall next to the 
platform, which faces towards the eastern end of the line of large postholes, south of the 
courtyard. Whatever its purpose it was surely not the same as the other pair of walls, the 
longer of which runs towards the pole with a small roughly northern accretion, which 
stops short of the line between the pole and the point where the shadow of the top of the 
mast enters the courtyard in mid winter, leaving a clear line of sight between the two. The 
two walls may have served partly to modify the ground level in the area, possibly bringing
it up to the same level as at the base of the mast or higher.

The middle of the wall at the far western end of the courtyard, aligned c.55° from the 
meridian, faced the theoretical rising point of the mid-winter sun. If someone climbed the 
mast and sat on the top, he would have seen something remarkable: his life-sized shadow 
40m away on the vertical face of the wall, at the end of the much elongated shadow of the 
mast.97 This near miracle was perhaps the inspiration for the figures of men bearing 
extremely long flagpoles, known from the Narmer palette and elsewhere.98

Narmer Palette99, 

This magnificent ornamental palette was found at Hierakonpolis and has had various 
interpretations  with the smiting figure often being associated with Orion. For the reasons 
set out above, the presence of the four men bearing long flagpoles also implies a celestial 
source. The side with the circular grinding area could represent the northern sky, towards 
the end of the 4th millennium B.C., with Auriga top centre, near the zenith, and flanked by
Gemini and Perseus as heads of cows. The long-necked serpopards, around the pole, 
would be based on Ursa Major, Ursa Minor and Draco with their feet on the horizon, 
below which there is the figure of a bull breaking into a partially walled city, 
corresponding to Corona Borealis.100 The bull, the northern part of Hercules, appears to be 
pushing the stars around the pole and above the horizon. The tops of the four long 
standards might be associated with Lynx.

At the same moment, the other side of the palette would represent the southern sky with 
Orion in the position of the smiting figure, wearing the crown of Upper Egypt,  and 
Taurus as the hawk. The same three constellations remain at the top in an east/west line, 
but now in reverse order.

If correct the Narmer palette would be the earliest known attempt at depicting parts of the 
sky, running here from below the horizon in the north, through the zenith, to below the 
horizon in the south.

Strabo attributes the invention of the science of geometry to the Egyptians and from what 
we have seen above they were already well versed in this subject.101 Even without the 
concept of 'angles' they had reached an astonishing level of competence.  They were 

97There would be some slight distortion in his shadow if the wall was not perpendicular to the light of the 
sun.
98Emery W.B., Archaic Egypt, Penguin, 1984, pp 44/5. He also illustrates the mace-head of the Scorpion 
king with dead birds hanging from masts and the mace-head of Narmer with his standard bearers.
99This palette, found in 1897/8, is now in the Cairo museum, but pictures are readily available on line.
100The gap in the city walls corresponds to the gap between i & θ Corona Borealis.
101Strabo, The Geography of Strabo, Translated by Jones, H.L. William Heinemann, London, 1930, Vol. VII,
pp 269/270. 



conversant with the role of the pole, although they do not seem to have adopted a fixed 
'hour' measure, whether of 10°, 12° or 15°, all of which were tried later (see below).

Armant and Heliopolis.

Armant, founded c.-2000 on latitude 25.6°, was sometimes described as the southern 
Heliopolis, founded c.-2600 close to latitude 30°, and there is a possible justification for 
associating the two places.102 Their latitudes have respectively trigonometric ratios, cosine 
(9/10) and sine(1/2), which are appropriate for two different types of sundial. The older 
one has ½ for the sine ratio of its latitude and, in a horizontal sundial, this value is close to 
the ratio of the tangents of the hour-line bearing and time to the meridian. At Armant the 
cosine of its latitude is 9/10 which, in a vertical dial facing south or north, would be close 
to the ratio of the tangents of the inclination of the hour-line to the vertical and time to the 
meridian.103

Pyramids and Horizontal Dials

In the Pyramid Texts, on the walls of 5th and 6th dynasty pyramids, Utterance 251 includes 
‘O you who are over the hours…..’ and Utterance 320 ‘The King has cleared the night, the
King has despatched the hours….’.104  ‘In both passages the word for hours (wnwt) is 
determined by three stars, suggesting to us that the most primitive meaning of “hours” was
“nighttime hours”.105 The more precise measurement of time by the stars was clearly 
established by the 5th Dynasty (2500/2350 B.C.. We will see that they were interested in 
the line of the equator at an early date, presumably sparked by the almost perfectly straight
line, from west to east, of the shadow of the sun at the equinoxes. When time-keeping by 
the stars became more important it would have been convenient to have had plenty of stars
close to the equator and the number peaked around -2300 (Table 16).

            

102Shaw I. And Nicholson P., Dictionary of Ancient Egypt, British Museum, London, 1995 under Armant 
(p.37) and Heliopolis (p.124).
103Cousins F.W., Sundials, John Baker, London, 1972, pages 97 and 112. The calculations assume the 
sundial is at the centre of the earth, but the relationships are good enough for setting out a garden sundial and
they give a reasonable approximation of the true values. Using Skymap Lite, the calculated ratio of the 
tangents for the sun in mid-winter would have been 0.47, not precisely 0.5, at Heliopolis.
104Faulkner R.O., The Ancient Pyramid Texts, OUP, 1969. The earliest surviving example is in the pyramid 
of Unas (2373 BC) bur no single pyramid contains the whole text.
105Clagett M., op.cit. Vol.II American Philosophical Society, Philadelphia, 1995, p.49. The Egyptians 
employed a year of three seasons aligned with the rise and fall of the Nile, so it is tempting to assume the 
three stars were separated by 120°. This may not be correct as there is another small group of three (α Libra, 
β1 Scorpio, ε Ophiuchus) each separated by close to 15° (R.A), ideal for establishing an hour standard.



Table 16. Stars with magnitude <5 near equator106

Star RA Magnitude
-2300 -2500 -2450 -2400 -2350 -2300 -2250 -2200

Declination - Arc Minutes
δ3 Taurus 0.6 4.29 -2
ε Taurus 0.6 3.53 -2 15
11 Orion 18.7 4.65 -12 4
15 Orion 19.8 4.81 -11 4

134 Taurus 29.8 4.89 -5 10
28 Monoceros 65.4 4.68 -7 0

TYC 4857 2151 1 72.1 3.91 -12 -7 -2
27 Hydra 86.8 4.80 -12
υ2 Hydra 98.4 4.60 12 9
y Hydra 145.2 2.99 5 -9

β1 Scorpius 184.0 2.56 9 -7
ω2 Scorpius 184.1 4.31 -4
ω1 Scorpius 184.1 3.93 6 -11
ν Scorpius 185.6 4.00 9 -8

ψ Ophiuchus 188.2 4.48 -11
χ Ophiuchus 189.2 4.18 17 0

TYC 6221 904 1 192.8 4.91 4 -12
η Ophiuchus 200.0 2.43 2 -14

ο Serpens 208.1 4.26 7 -8
ξ  Scutum 219.0 4.66 7 -6
α Scutum 222.1 3.85 4 -9
η Scutum 227.9 4.83 7 -14
12 Aquila 229.1 4.02 9 -3
λ Aquila 230.4 3.43 5 -6
ι Aquila 238.8 4.36 6 -3

η Andromeda 320.3 4.40 -3 10
λ Aries 334.3 4.79 -6 8
α Aries 336.3 2.01 -14 1
ξ Aries 352.1 4.00 -8

Number of Stars 4 4 5 11 13 9 8
Closest pair or 0 -3/+6 -2/+9 -3/+15 -11/+1 0 -6/+6 0

Balanced pair -4/+6 -11/+10 -15/+14 -11/+10 -7/+7 -6/+6 -3/+4

Figure 9c with four pyramids attributed to Sneferu (3) and to his son Khufu (1) indicate 
that they were conversant with the design of a horizontal dial with, by the time of the 
Great Pyramid, half-hour divisions. Earlier the 45° hour-line, passed under the centre of 
the satellite pyramid and met the equator on the enclosure wall at Meidum, while at the 
North or Red pyramid it was the 48° hour-line. There the northern and southern corners of 
the pyramid coincided with 36° and 72° hour-lines, suggesting that they were 
experimenting with an 'hour' of 12°. The 30° hour-lines met the equator as it crossed the 
base of the Bent pyramid.107  Curiously, in plan view, the bend on the southern side of the 
Bent pyramid coincided with the 30° hour-lines, in a similar manner to the upper missing 
part of the Meidum pyramid.108

The inclination of the plane of the equator would have been observable where the shadow 
of the sun crossed an enclosure wall at the equinoxes.  Along the meridian it would be 
possible to measure the distance of the equator from the centre of a gnomon and from its 
known height calculate the length of the meridian in the equatorial plane and from that 
length deduce the distances along the equator for any time from the meridian.109 Drawing 
lines from those points to the pole would give the respective hour-lines.

106 Data from SkyMap Lite 2005
107Although these points influenced the design of the complex, observations could not actually be made at 
many of them. For example at the Bent pyramid an observer at a corner of the base could not see the apex.
108At Meidum the pavement surrounding the enclosure wall suggests that this pyramid may have ben given 
over to the study of the sky. If this was so, could it have been partly dismantled to discover what would 
happen with a 'bent' pyramid?
109The calculation being Length of the meridian in the equatorial plane x Tan (Time from meridian)



For the range of geographic latitudes of the pyramids, we would to-day happily assume 
they were all on 30° when setting up a garden sun-dial, but the size of the pyramids makes
this questionable. Table 17 shows the distances along the equator for various times to the 
meridian. For times of 60° or more there are noticeable differences in the cubit values, 
although using the same values for all pyramids would not introduce a major error in time 
measurement.110

The final column in Table 17 shows the rounded distance in units of 28.87 cubits, which 
as shown below seems to have been used for some aspects of the layout of the pyramid 
complex of Pepi II.

Table 17. Distances, in cubits, along the equator for successive half-hours from transit, 
assuming a pyramid with a height of 100 cubits (52.5m) and geographic latitudes of 
Meidum and 30°, near Abu Roasch. 

Latitude(°)
Tangent

Sine

29.388 
0.5632
0.4907

30.000
0.5774
0.5000

30.000
cubits/28.87

30.000
rounded units of 

28.87 cubits

Time from meridian
(°)

cubits cubits units units

7.5 15.110 15.202 0.527 15/28

15 30.752 30.940 1.072 15/14

22.5 47.539 47.829 1.657 12/3

30 66.262 66.667 2.309 2⅓

37.5 88.065 88.603 3.069 3

45111 114.769 115.47 4.000 4

52.5 149.570 150.484 5.212 5¼

60 198.785 200.000 6.928 7

67.5 277.077 278.769 9.627 92/3

75 428.323 430.940 14.927 15

82.5 871.756 877.082 30.288 30

Equator distance 56.320 57.735 2.000 2

Pole distance 177.558 173.205 6.000 6

The pyramid of Khufu shows their mastery of horizontal dialling, with the Queens' 
pyramids and several boat pits positioned in close relationship to hour-lines, in half-hour 
divisions.112 The northernmost boat pit in the north-east is close to the junction of the 
equator and the circle around the pyramid, where the altitude of the sun or star would 
equal the slope of the corners. This is an early intimation that this altitude was of 
particular interest.

Figure 9d has another four pyramids, with Khafre's, Menkaure's and Sahure's 
demonstrating an interest in the area to the east of the pyramid. In Khafre's the times for a 

110Using 428.33 cubits along the equatorial line  (correct for 75° to the meridian on the latitude of Meidum) 
on a latitude of 30° would give a time of 74.91°, a difference of 22 seconds.
111The cubit values are the same as the length of the meridian in the equatorial plane.
112The Queens' pyramids were positioned in relation to the centre on triangles with sides in the ratios 
11,60,61, 1,2,√5 & 3,4,5, scaled up so that the long side was 195 cubits or 102.4 m, using 525mm for the 
length of a cubit. This compares with 524mm, deduced by Petrie  W.M.F,, Encyclopaedia Britannica , 1951, 
Vol. 15, p.144.



celestial object on the equator to reach the altitudes of the corners and the sides would be 
2.5 and 1.5 hours from the meridian. That of Userkaf does not follow this trend to the east 
with most ancillary structures being around the pole, but it is the first of the pyramids with
a standard slope of 53.13°.113 Its enclosure wall on the east is close to the pyramid, but 
with room for the point where the altitude, along the equator, is the same as the corners of 
the pyramid, marking one end of the standard hour. The other end of this standard hour 
was within the pyramid and therefore inaccessible. However it would be clearly signalled 
by the disappearance of the shadow of the pyramid.  At Menkaure's and Sahure's this point
on the equator also coincided with an azimuth of 45°, which too would be visible outside 
the pyramid.

The pyramid of Sahure has an enclosure wall indented beside the equator and the 
lengthening evening shadow would run from 36° to 53°, a range of 17°, with room for a 
standard hour now completely outside the pyramid.114 The same general layout to the 
north-east of pyramids endured for some 550 years until Senworset I.

Figure 9e shows another four pyramids, all with a similar layout around the north-east 
corner and their details are summarised in table 18, which also includes those of Kafre, 
Sahure, Pepi II (ignoring the girdle around the base) and the much later Senworset I 
(-1965/-1920).

Table 18.

Pyramid Times for shadow leaving the
pyramid and meeting the enclosure

wall along the equator and the range

Times for shadow leaving the
pyramid and meeting the enclosure

wall on the North and the range

Times to transit when
altitude the same as the

slope of the corners/ sides

Difference from
one hour

degrees degrees degrees seconds

Kafre 33/n.a 33/n.a 22.48/37.58 +23

Sahure 36/53 - 17 36/42 - 6 27.61/41.73 -211

Djedkare 33/49 - 16 33/45 - 12 22.72/37.73 +1

Unas 31/50 - 19 31/46 - 15 16.35/32.95 +385

Teti 33/52 - 19 33/48 - 15 22.69/37.71 +5

Pepi I 34/51 - 17 34/47 - 13 22.72/37.72 +1

Pepi II115 33/51 - 18 33/45 - 12 22.74/37.74 -1

Senworset I 37/52 - 15 37/46 - 9 29.2/42.98 -294

113Over the following 300 years the same slope was used in another six pyramids, if one includes that of 
Djedkare-Isesi. which was originally omitted because of small inconsistencies in its dimensions and the 
slope of its sides. Its design is important because it incorporated the standard slope of 53.13° (as in a 3,4,5 
triangle) and a height of 52.5m (100 cubits) with a layout, around the north-east corner, similar to that of 
Sahure. Five of the standard pyramids had the same dimensions, a height of 100 cubits and a base side of 
300 cubits.
114What drove their interest in an 'hour standard', which can be traced to the pyramids of Khafre and 
Menkaure? Although they could accurately calculate time along the equator, they would not get precisely the
same results, in practice, if two pyramids were significantly apart in longitude. At Giza, the three pyramids 
have longitudes: Khufu (31.1342°), Kafre (31.1308°) and Menkaure (31.1283°), a range of 21 seconds. This 
might have been a source of frustration, in the absence of any notion of a spherical earth. An 'hour standard' 
would have had almost precisely the same length in cubits for all three pyramids, after due allowance for 
their different heights.
115The measurements ignore the girdle around the base of the pyramid, the effect of which is discussed 
below. With the girdle, the time on the equator, at ground level, would be reduced from 18° to 14°, 
insufficient for an hour.



For seven pyramids, from Sahure's to Senworset's, the layout in the north-east corner 
could accommodate an hour standard along the equator, but only in those of Unas and Teti
could the same hour be measured along the northern enclosure wall.116 

Previously it was noted that the standard pyramids had a built-in standard hour along the 
equator, when the celestial body was at altitudes equalling the slopes of the sides and 
corners.117 This was part inside and part outside the pyramid. The details are summarised 
in the last two columns in the table above.  This characteristic was the result of the 
adoption of the standard pyramid, with a slope of 53.13°, which, if built on a latitude near 
29.845°, would create this very accurate standard hour.118  It had ceased to be of 
importance by the time of Senworset I.

Pyramid of Pepi II

In the last and most southerly, that of Pepi II, we can ‘see the plan of the standard pyramid
complex in its final and most developed form’.119 However it had an added girdle, 6.5 
metres (12.4 cubits) in width, which increased the sides of the base from 150 to 174.8 
cubits.120 Consequently, although included in table 18, because of the added girdle around 
the base, a standard hour of 15° could not be accommodated at ground level (fig 9a).
In relation to the main pyramid, those of the wives were positioned using Pythagorean 
triangles (Table 19 and Figure 9a).121

        Table 19. Pepi II - Pyramids of wives
Pyramid Centre

Measured on plan
Pythagorean

Triangle & (scaling)
Calculated centre

West North West North
cubits cubits cubits cubits

 Iput II 160.8 119.1 3,4,5  (40) 160 120
Neith 66.4 155.8 5,12,13 (13) 65 156

Wedjbeten 79.4 152.4 8,15,17 (10) -80 -150

On the other hand, some distances in the Pyramid complex appear to be based on a 
standard, related to the distance of the equinoctial line from the centre (Table 20). 

 

116It is assumed that all measurements started at the time the equatorial shadow appeared out of the pyramid.
117Bremner R.W., Letter to BAA Journal, Vol. 127-1, February 2017, page 55. D. Rawlins pointed out the 
inconsistent dates in that original letter.
118The calculations both at the time and now ignore the effects of geocentric parallax.
119 I.E.S. Edwards, The Pyramids of Egypt, Penguin, 1993, p.181. 
120 Edwards, op.cit. p.188. The girdle may have been required for reinforcement. We do not know its height, 
but the width was 6.5m or 12.4 cubits. On the small plan the side measured 172.5 cubits, compared with the 
calculated value of 174.8 cubits, a difference of ca. 1.3%. This gives a rough idea of the precision of the 
measurements. 
121With the four already noted above (p.15), two at Khufu's and one at Pepi II's, brings the total of different 
Pythagorean triangles to 6: 3,4,5-5,12,13-7,24,25-8/15/17-9/40/41-11/60/61.



     Table 20.  Pepi II - Grid of c. 28.8 cubits
Distance

cubits
Divisor Unit of Measurement

cubits
Eastern Wall of Mortuary
Temple to centre pyramid

259.8 9 28.9

Girdle side 172.5 6 28.7
Satellite Pyramid N 114.7 4 28.7
Satellite Pyramid E 72 2½ 28.8

Diagonal Open court 58.1 2 29.0
Diagonal of Iput II 56.7 2 28.4

Equinoctial shadow line 57.36 2 28.7
Distance on equator
between 35° & 50°

& between 40° & 50°
56.7
40.7

2
√2

28.3
28.8

This suggests that a unit of about 28.8 cubits was used for some aspects of the layout, with
12.5 of these units being 360 cubits. Today we might be tempted to think of it as 90/ π 
(28.6) and a circle with this radius would have a circumference of 180 cubits with a ratio 
of 2° per cubit, one of the ancient norms.122 Then it may well have been derived from 
50/√3 (28.87), which agrees with the calculations in Table 20.123 

In reality none of the standard 3,4,5 pyramids is precisely on a latitude of 30° and 
therefore their values are slightly different. 

The equatorial line coincides with the northern wall of the mortuary temple, but the hour 
standard, identified in table 11, cannot be accommodated, as already mentioned. On the 
other hand, before the addition of the girdle around the base of the pyramid, an hour, from 
35° and 50° after transit, would fit neatly within the open area immediately north of the 
sanctuary. In that position it would serve for objects in the western sky, using the apex as a
foresight. In the narrow gap between the pyramid and the enclosure wall in the west, a star
could only be observed close to 35° before transit (ignoring the girdle).124  In the pyramid 
of Pepi II, the girdle would reduce the level area along the equatorial line. It is suggested 
that, to overcome this setback, they opted for a short hour of 10° or 40 minutes. For 40° 
and 50° from transit the observer would be, respectively, 96.7 and 137.4 cubits from the 
meridian, with the difference being close to an average of 4 cubits per 1° of time or 1 cubit
per minute.125 A short hour of 10° appeared later in the diagonal star tables on coffin 
lids.126 

The sanctuary would restrict observations of stars above the equator, but to the south the 
absolute limit would be –18° declination on the meridian.127 Away from the meridian such 
a body could only be observed from outside the enclosure wall. Within it and north of the 
122 90/π equals 28.8, if π is taken to be 25/8. Intriguingly at just over 72° from the meridian, the distance is 
360 cubits and 1st, 2nd & 5th Dynasty representations of stars show them with five points (see footnote 48). 
123 The later Shadow Clock, described in the Cenotaph of Seti 1 is different, as it appears to use hours of 60 
minutes. (Clagett op. cit. pp.463/470 has a translation).
124 In round numbers stars on the equator could not be observed within 35° of the meridian, mimicking the 
70 days passed in the ‘duat’. See Clagett op.cit p. 364/5, referring to the Book of Nut. 
125 Expressed in units of 28.87 the two values in cubits become 3.34 and 4.76 The ratio would be exactly 1 
cubit per minute, on average, between 39.5° and 49.5° from transit, with the distances from the meridian 
being 95.0 and 135.0 cubits.
126 Wells R.A., op.cit., pp 37/8. The earliest of these tables date from the 9th Dynasty, soon after the reign of 
Pepi II.  
127 The declination of Sirius would only have risen to –18° by 1425 BC. 



pyramid the declination would be around –12°, which, crossing the meridian 90 cubits 
north of the apex, avoids the girdle and allows observation along the length of the 
enclosure wall. Significantly the causeway for Khafre’s pyramid had an azimuth, directed 
at the rising of a body with a more precisely defined declination of –11.8°.128 The sun 
would have such a declination two months from the winter solstice and would delimit a 
season of the four months with the 120 shortest days.129 A calendar for an Egyptian year of
three seasons could thus be kept in step with the sun, with the other two seasons being 
either side of the summer solstice. 

At night, four bright stars were in the band between 0° and –12° of declination (Table 21). 
Sirius itself was too low, but the Sothis constellation included her head-dress, so 
δ Monoceros, with a similar R.A., is taken as the exemplary star. One of the 36 ten-day 
decans is ‘Red One of  Khenett’, identified as the red α Scorpio (Antares, Rival of Mars). 
Between it and δ Monoceros there were 136 days and 13 decans, which are sufficiently 
correlated to justify the identifications.

    Table 21. Bright Stars with declinations between 0° & -12°

Star130 Magnitude Equatorial
Co-ordinates 

-2300

Julian Day
Re-based

Diff
R.A.

T class
10 day decans 131

R.A. Decl. days degrees No. Re-based
α Taurus 0.75 11.7 -1.1 -179 -176 24? -18?
y Orion 1.64 26.3 -7.5 -164 -161 26? -16?
α Orion 0 33.0 -4.1 -157 -155 27? -15?

δ Monoceros 4.15 53.8 -4.3 -136 -134 29 -13
α Scorpio 0.88 187.8 -7.8 0 0 6 0

These stars are close to the equator, where we have seen that the distance between 40° and
50° from transit is just over 40 cubits and for bodies with a declination of –12° it would be
38 cubits between 30° and 40°.132 In both cases it would average about 1 cubit per minute. 
The Egyptians were clearly able to measure time (months, days and hours) rather better 
than is usually acknowledged.

4. Coffin Lid Tables in Egypt.

Two centuries after the building of the last standard pyramid we have the first coffin lids 
with astronomical tables. These tables list 36 decan stars, at 10-day intervals, plus 5 
epagomenal days, in accordance with the Egyptian calendar. We have seen above that they
were using an hour of 60 minutes, but the girdle added to the pyramid of Pepi II, may have
forced them to employ a shorter hour of 40 minutes. They would then have had to rework 

128 Nell, E. and Ruggles C.,The Orientations of the Giza Pyramids and associated structures, University of 
Leicester, version 2 – 15th March 2013, p.37, Table 12.
129 The sun’s R.A. being 208° & 332° with a difference of 124°.
130 Star data from StarMap Lite 2005.
131 S. Symons, S, A Star’s Year in J.M. Steele (editor), Calendars and Years, Oxbow, 2007. p.8 (Table 5). 
Decans 24 and 25 refer to the Arm [of Orion]. In the K class (Table 6) the difference, between Sothis and the
Red One, is 14, not 13, decans.
132 For comparison, the distance for the original hour standard was 41 cubits for 60 minutes. The distances 
along the equatorial line being 48.3 and 89.2 cubits for altitudes of 53.13° and 43.314°.



earlier schemes and, on this basis, we suggest dating the surviving coffin lid tables to 
about –2250.

The majority of the coffin lids of known provenance come from Asyut on a latitude of 
27.23°, which has certain interesting properties. The sun at the solstices would rise 27.16° 
from due east, which is almost identical to the altitude of the pole.133 Less obviously the 
azimuth, swept by the sun at the two extremes, would be 153° and 207°, if measured from 
rising to 270°, which closely matches the time of the sun above the horizon, 154° and 
206°. A change of 1° azimuth corresponded, on average, to 1° time above the horizon. 
They had the means to measure time for celestial bodies with declinations between +/-30°.

Table 22. Asyut - Latitude 27.23° Rising Azimuth and Time above Horizon
Rising Azimuth

from  North
Declination Azimuth swept

to 270°
Time above horizon

Degrees degrees degrees degrees
50 34.9 220 222
60 26.4 210 210
70 17.7 200 199
80 8.9 190 189
90 0 180 180
100 -8.9 170 171
110 -17.7 160 161
120 -26.4 150 150
130 -34.9 140 138

Symons allocates the 19 known coffin lid tables to one of two classes K(7) and T(12), in 
which the Sothis constellation, with Sirius, is placed 36th and 29th respectively. The five 
epagomenal days follow the 36th decan, so were respectively either 10/15 or 80/85 days 
after Sirius.134 In what follows we will examine the epagomenal stars in the K class.135

The possible concept behind the scheme is that for 360 days there was a selection of 36 
stars which progressed through 360° in R.A. but only 355° of longitude.136 In the next five 
days longitude would reach 360°, but R.A. would change very little.

133 Assuming 23.95° for the obliquity of the ecliptic.
134 Locher has identified the sceptre of Sothis on a coffin lid as representing a line of stars from β Col to η 
Lep, which implies a year beginning, not ending, with Sirius – see Von Bomhard A-S, The Egyptian 
Calendar, Periplus, London 1999, p. 23, Fig. 17. Possibly the image represents another tradition.
135 Between Crux and Corvus there are many stars where those for the epagomenal days in the J class might 
be found. 
136 If R.A. and longitude had the same value, the stars would lie on a circle mid-way between the ecliptic and
the equator with their declinations and latitudes having the same absolute value but with the opposite sign.



Table 23. Possible Epagomenal Stars (a/e) with First and Last Decan Stars for –2250
(Last Column – azimuth differences with δ Cma on meridian and 5 days later)

Star Number
K class

Mag. R.A. Decl. Long. Lat. Day Azimuth from
meridian

degrees degrees degrees degrees degrees
α Cma 36 -1.44 55 -20 46 -39 0

Calculated
Ideal a 65 -26 56 -47 10
Ideal 1 65 -8 61 -29 15

Possible Stars meridian +5 days

δ Cma a 1.83 65 -28 55 -49 10 0 5.1
TYC6537 b 4.83 65 -25 57 -46 11 -0.5 5.0
TYC5974 c 4.94 64 -20 57 -41 12 0.3 6.3
FW CMa d 4.14 64 -17 57 -38 13 1.2 7.6
KQ Pup e 4.82 65 -15 60 -36 14 -0.7 6.1
α Mon 1 3.94 65 -10 61 -31 15 -0.3 7.3

At the same time of day, the five day change in azimuth is between 5° (δ Cma) and 8° (α 
Mon), while their R.A. is sensibly the same. By having five epagomenal stars instead of a 
single half-decan, the adjustment is spread over five days, which suggests daily time-
keeping was of paramount importance, but they could tolerate a daily adjustment of little 
more than 1°. Could they have tried to accomplish this by using offset meridian lines, for 
the five epagomenal stars?   The daily offset would have been successive one-fifths of the 
overall adjustment.  In practice this is not straightforward with these actual stars.

It is easy to calculate the R.A. of each of the 36 decan stars, but without being able to 
pinpoint their declinations, although –30° would be attractive.137As they were evidently 
prepared to use relatively faint stars, it is not difficult to suggest one for each of the 36 
decans. Although, even with a sizeable population to choose from there must have been 
the odd one which did not fit the scheme precisely. For example with three adjacent stars 
with 9° and 11° (R.A.) between them, the outer two could be timed on the meridian, but 
the middle one would be 1° out. To overcome this, they might well have used a pseudo–
meridian, one degree offset from the true meridian, for just that one star. Subsequently this
could have developed into a grid to cover the area around the meridian, such as can be 
seen in the Ramesside Star clock of ca. -1470.138

At first sight such observations were made by one of two observers, seated facing each 
other, with the horizontal positions of stars indicated by parts of the other observer’s body,
such as his eye, ear or shoulder. Neugebauer describes the method as ‘incredibly crude’.139

Perhaps the second observer was only to be imagined, rather as we visualise a clock when 
indicating directions by the position of an imaginary hour hand. When my oculist says 
look at my ear, he wants me to look in the direction of his ear, not study it!

From at least the Old Kingdom, Egyptian artists used square grids to set out human 
figures.140 It would not be a big step to use parts of the human body to indicate a particular 

137 Multply class K row number by 10 and subtract 305 to get R.A. in –2250. A star with a declination of 
around –30°, near the meridian, would move 10° in azimuth over 10° time. 
138 Clagett op. cit. Vol II p.406.
139 Neugebauer O., op…cit p.561.
140 Robins G, Proportion and Style in Ancient Egyptian Art, Thames & Hudson, London, 1994, p.59



gridline with eye, ear and heart representing the three successive lines from the centre. 
What angles might have been represented? The proportional distances are in the ratio of 
about 1, 3 and 6, so if the first line was at one degree, the others would have been about 3°
and 6° from the centre.

5. Pythagorean Triangles and ratios of angles, including time, to linear units. 

In the Old Babylonian period (ca. 1800 BC), they were well versed in Pythagorean 
triangles. The Ark tablet contains a value, 14430, for the necessary rope and this can be 
expressed as 2 x 3 x 5 x 13 x 37, where the last three factors equal the hypotenuse of a 
Pythagorean triangle.141 A figure of 2405 (5 x 13 x 37) contains the hypotenuse of no less 
than 13 Pythagorean triangles – 5, 13, 37, 65(2), 185(2), 481(2) & 2405(4). A circle with 
such a radius has 108 points with integer co-ordinates, including the four cardinal points.

The more famous tablet, Plimpton 322, has 15 extant rows, each referring to a 
Pythagorean triangle, although some have argued that the scribe intended to complete a 
total of 38 rows, covering the edge and both sides of the tablet.142 There may be good 
reasons why he stopped at the 15th row.

The tablet is broken and the rows are incomplete, but it is believed they would have 
included, in two missing columns, the short side (β) and hypotenuse (δ) of a normalised 
right triangle with a long side of 1. The first extant column (δ2) is followed by expanded 
values b and d and finally the row number.

The ‘shape of the triangles varies rather regularly ….’143  This regularity can be improved 
significantly.

It is suggested that the operative part was the normalised triangle, with the expanded 
integer values only required to calibrate an instrument, consisting of an upright of length 1
and a horizontal bar of the same length. The horizontal bar could be moved length-wise, 
so that the vertical would divide it into two portions with lengths β and 1-β. There would 
then be two right-angled triangles, sharing a common long side of 1, with sides β, 1, δ, as 
defined in the tablet, and 1-β, 1, √ (2-2β+β2) or √(1-2β+δ2), in the ancillary triangle, which
could both be scaled, as required.

Scaling makes no difference to the angles in the two triangles. In the defined triangles the 
angles change by ca. 0.94° per row, but in the ancillary triangle it is about 1.5°, an 
attractive 1/60th of a quadrant.

Figures 10 and 11 plot the relationships between the angles and the short sides or the 
diagonals of the two triangles, several of which are closely linear up to about row 15. The 
ratios depend on the scaling of the triangles, which is assumed to be by a factor of 11, 
which is appropriate for the latitude of Babylon (32.5°). There the tangent of the celestial 
equator (57.5°) is 11/7. The smaller angles in the defined triangles for rows 14 and 15 are 
33.3° and 31.9°, with the latter being most appropriate for latitude 31.9°. It has been 
argued that the tablet was from Larsa on latitude 31.2°, a little south of Babylon.

The ratios of degrees per unit of length are very close to 5° for:
141 Finkel I. The Ark before Noah, Hodder & Stoughton, 2014, p 108. No units are actually mentioned.
142 Brittan J.P. et al, Plimpton 322: a review and a different perspective, Arch. Hist. Exact Sci. (2011) 65 pp 
519/566.
143 Neugebauer )., The Exact Sciences in Antiquity, Dover, New York, 1969, p.38.



The short sides of both triangles and the smaller angles in the ancillary triangles
The diagonals and the interior angles of the defined triangles.

The diagonals of the defined triangles and the angles of the ancillary triangles have a ratio 
of about 8°

It would be simple to change the two ratios from 5° and 8° by increasing the length of the 
long side from 11 to 22 or 44 respectively to give 2.5° and 2° per unit, the two ancient 
norms. The alternative is simply to reduce the size of the unit of measurement.

If the small angle in the ancillary triangle corresponds to the zenith distance of a star that 
transits overhead, the ratio of the east/west co-ordinate of the observer’s eye is 6° (time to 
transit) per unit (see last three columns in Table 24 and figure 12). Such stars were known 
as zigpu stars at the time of mul-Apin, ca. 1000 BC.144

Plimpton 322 looks like a multi-purpose tool for astronomers, but this conclusion has been
overtaken by the recognition of its more specific use, namely to set out a rectangular 
building with a diagonal of specific length and orientation (see section10 below especially 
pages 57/58 and figure 21).

144 Hunger H. & Pingree D., MUL.APIN, An Astronomical Compendium in Cuneiform, Archiv fur 
Orientforschung, Beiheft 24, Horn, Austria, 1989 pp 141-144. Walker C. (editor), op.cit. 1996, p.48 refers to
‘A number of Late Assyrian observations and of Late Babylonian eclipse reports are timed in relation to the 
meridian passage of one of a group of stars known as zigpu stars.



Table 24. Plimpton 322- values for rows 1 to 15, after scaling the common long side to 11 
units. 

1. Defined Triangle 2. Ancillary Triangle Stars with Declination 32.5°
On latitude 32.5°

Row β δ smaller
angle

11-β diagonal smaller
angle
zenith

distance

Time to
transit

Position
Observer’s eye

units units degrees units units degrees degrees units E/W units N/S
1 10.91 15.49 44.76 0.09 11.00 0.48 0.57 -0.09 0.00
2 10.72 15.36 44.25 0.28 11.00 1.48 1.75 -0.28 0.00
3 10.54 15.24 43.79 0.46 11.01 2.37 2.81 -0.46 -0.01
4 10.36 15.11 43.27 0.64 11.02 3.35 3.97 -0.64 -0.01
5 9.93 14.82 42.08 1.07 11.05 5.55 6.58 -1.07 -0.03
6 9.75 14.70 41.54 1.25 11.07 6.50 7.71 -1.25 -0.05
7 9.33 14.43 40.32 1.67 11.13 8.61 10.21 -1.66 -0.08
8 9.16 14.31 39.77 1.84 11.15 9.52 11.29 -1.84 -0.10
9 8.82 14.10 38.72 2.18 11.21 11.22 13.31 -2.18 -0.14
10 8.42 13.85 37.44 2.58 11.30 13.19 15.65 -2.57 -0.19
11 8.25 13.75 36.87 2.75 11.34 14.04 16.66 -2.74 -0.22
12 7.70 13.42 34.98 3.30 11.49 16.72 19.85 -3.29 -0.31
13 7.38 13.25 33.86 3.62 11.58 18.22 21.64 -3.60 -0.37
14 7.22 13.16 33.26 3.78 11.63 18.99 22.56 -3.76 -0.40
15 6.84 12.96 31.89 4.16 11.76 20.70 24.60 -4.13 -0.48

Overall
range 4.07 2.53 12.87 4.07 0.76 20.22 24.03 4.04 0.48

Ratio °/β 3.16 4.97
Ratio °/δ 5.09 26.61

Ratio
Ancillary

Angle
°/ δ

7.99 16.93

Ratio
angle
 °/row

0.92 1.48

Ratio
Altitude
Per E/W

unit
°/unit 

5.95

6. Shadow Lengths - Egypt and Mesopotamia.

Egypt

There are simple portable L-shaped sundials from Egypt dating to the middle of the 
second millennium B.C.145 They consist of a short, flat-topped, upright and a long flat 
horizontal bar to receive the shadow. The gnomon in surviving examples is very short, but
some have vertical holes indicating that the height could be raised by the addition of 
another block.  A late hieroglyph even indicates that one gnomon was like a short ladder 
with 3 different levels.146 We know that the marks on the horizontal bar are placed, in an 

145 Symons S, Ancient Egyptian Astronomy, PhD Thesis, University of Leicester, 1999, pp 127/151. On pp 
127/9 she examines one (E1) from the reign of Tuthmosis III, where the distances between adjacent 
individual hour marks are 1 – 2 – 3 – 4 – 5 with the marks 1,3,6,10, & 15 units from the gnomon.
146 Symons S., op.cit. Figure 19c.



arithmetical sequence, at 1,3,6,10 and 15 units from the gnomon. The next two values, in 
this sequence, would 21 and 28 units, with the latter equally the number of digits in the 
Royal cubit.147

Symons has convincingly argued that those sundials, fitted with a plumb-line to ensure the
long bar was horizontal, were designed to be handheld and rotated to point towards the 
sun.148 Certainly they could be used in this way, but perhaps more for measuring altitudes 
rather than estimating time.  Comparing the distances, plus or minus 0.5 unit, in the 
arithmetical series with gnomon height, a gnomon of about 5.5 units would permit good 
altitude estimates for: 10°, 15°, 20°, 30°, 45°, 60° and 75° (Figure 13). 

To measure the same degree values, not of altitude but of time from the rising of the sun, 
we can calculate the corresponding altitude of the sun at the equinoxes as being: 9.0, 13.5, 
17.9, 26.7, 39.5, 51.1 and 60.2. A gnomon of about 5 would give reasonable estimates of 
time after rising for the first four hours or so. For the remaining hours a shorter gnomon 
would be required.

We know from the pyramid complex of Pepi II (Figure 9a) that they were particularly 
focused on the equator, or a little below it. The equinoctial shadow is aligned with the 
northern edge of the building around the open court. Its eastern edge is about 260 cubits 
from the centre of the pyramid, equating to 2.6 times the height at ground level. On the 
roof, if 13 cubits high, the ratio would be 3.0, corresponding exactly to the second mark in
the arithmetical scheme. Consequently we can think of the horizontal bar of the sundial as 
being like that roof, only relatively much longer. 149

No plumb line is shown in the Osireion drawing and it is suggested that for the estimation 
of time, throughout the year, the dial was placed due east/west with the face of the 
horizontal bar flush with the ground.150 The marks on it could then be extrapolated by eye 
to the solstice positions or the dial could be rotated about the long arm until the shadow 
fell on it (table 25).

Table 25.  Latitude 26°, Obliquity of Ecliptic 23.83°, 5  unit gnomon, no allowance for 
refraction, horizontal bar fixed due east/west and flush with the ground..

Calculated
E/W distance

Arithmetical Scheme

Hour Difference Equinoxes Summer Solstice Winter Solstice
Units Units Units Hours from

rising
Hours from

rising
Seasonal Hours from

rising
Seasonal

1 20.8 15 -5.8 1.36 1.41 1.24 1.30 1.51
2 9.6 10 +0.4 1.94 2.05 1.80 1.83 2.13
3 5.6 6 +0.4 2.86 3.08 2.71 2.63 3.05
4 3.2 3 -0.2 4.11 4.55 4.00 3.67 4.26
5 1.5 1 -0.5 5.32 6.00 5.28 4.64 5.38

The east/west components of the shadows of a 5 unit gnomon, on a latitude of 26°, would 
be within 0.5 units of four, out of the first five, positions in the arithmetical scheme at 

147 With a one digit gnomon, the altitudes of the shadows corresponding to the first seven positions in the 
series, would be 45°, 18°, 9°, 6°, 4°, 2.7° & 2.0°. The last, corresponding to one Egyptian Royal cubit of 28 
digits, matches one of the two ancient norms in Mesopotamia, with 1 cubit representing 2°. 
148 Symons S., op.cit. p. 143.
149 The pyramid at Meidum, from ca. 2600 BC has a small chapel on the east and a long causeway, running 
due east, albeit not horizontally.
150 Symons S., op.cit. Figure 17, p.131.



hourly intervals (Table 25). The prime reason for the single discrepancy can be attributed 
to the arithmetical scheme itself, which could easily have had one more position at 21 
units from the gnomon, near the end of the bar, for the first hour. The mark at 15 units 
would indicate 1⅓ hours, not 1, from rising.

The data is broadly consistent with a gnomon of five units on a latitude close to 26° 
(Figure 13).151 The dial was evidently intended to indicate seasonal hours, but at the 
solstices for the first two hours, the times are closer in equinoctial hours. The dial would 
not show either equinoctial or seasonal hours consistently throughout the year, but was 
presumably good enough for everyday use.

Once they had recognised that the sun’s rays rotated about the top of a gnomon, they could
have studied it graphically, just as we can today, albeit with greater ease and precision 
now. This would explain why refraction seems to have played little or no role. We have 
already seen above that they were measuring time in units of either 10° or 15° in the 
pyramid era.

Mesopotamia

Much has been written about the Shadow Length Table in Mul-Apin, but there is one 
aspect which has still not been resolved.152 For the equinoxes, no shadow lengths greater 
than 3 are included, indicating there was an alternative method, other than simply the 
shadow length, to determine those positions. It was suggested above that in Egypt they 
extrapolated from the equinoctial positions to those for the solstices. In Mesopotamia they 
may well have interpolated from the solstices to the equinoxes, graphically by the 
intersections of the equinoctial shadow path with the straight lines between the points for 
the two solstices (Table 26 & Figure 15). 

Furthest from the gnomon these straight lines mark equal time from rising and lie almost 
due north/south. Nearer to the gnomon the difference in time from rising, for the two 
solstices, diverges and the lines deviate further from due north/south. For the first hour or 
so the table would give quite good estimates of the equinoctial time after rising, but less 
good thereafter.

151 The 26th parallel has interesting properties. Firstly the equinoctial shadow at an altitude of 26.7° is 60° 
from transit. Secondly, on 26.56°, the equinoctial shadow is exactly half the height of the gnomon from due 
west/east and the seked (inverse tangent) of the pole is precisely 2. Thirdly, on a latitude of 26.95° and an 
obliquity of 23.83°, the sun would rise 26.95° either side of due east at the solstices. At a radius of 10 from a
gnomon of unit height the north/south distance between the shadows at the solstices would be 17.9 units.? 
With a conventional 180 days between the solstices, each unit would correspond to a decan of 10 days, on 
average. It is therefore not too surprising that several coffin lid star tables came from Asyut, on latitude 
27.2°. (see Symons S., A Star’s Year in Calendars and Years (edited by Steele J.M.), Oxbow Oxford 2007), 
p 2,Table 1.
152 Hunger H. & Pingree D., MUL.APIN, An Astronomical Compendium in Cuneiform, Berger, Horn, 
Austria, 1989, pp 153/4.



Table 26. Mul-Apin Shadow Length Table, Latitude 32.5°, Obliquity 23.83°, 
no allowance for refraction. Indicated times (without brackets) as given in tablet.

Shadow
Length

Equinoxes Summer Solstice Winter Solstice

Shadow
length

Time 
Ind.

Time
Calc.

Diff Time
Ind.

Time
Calc.

Diff. Time
Ind.

Time
Calc.

Diff.

cubits cubits degrees degrees degrees degrees degrees degrees degrees degrees degrees
10 (8.8) (7.5) 7.7 (-0.2) 6.0 7.6 -1.6 9.0 7.9 +1.1
9 (7.9) (9.5) 8.6 (+0.7) 6.7 8.4 -1.7 10.0 8.8 +1.2
8 (7.0) (10.7) 9.7 (+1.0) 7.5 9.4 -1.9 11.2 9.9 +1.3

7153 (6.1) (12.3) 11.0 (+1.3) 8.6 10.7 -2.1 12.9 11.3 +1.6
6 (5.2) (14.4) 12.9 (+1.5) 10.0 12.4 -2.4 15.0 13.3 +1.7
5 (4.3) (17.4 15.4 (+2.0) 12.0 14.8 -2.8 18.0 16.0 +2.0
4 (3.5) (21.4) 19.0 (+2.4) 15.0 18.2 -3.2 22.5 19.8 +2.7
3 3 25.0 22.0 +3.0 20.0 23.7 -3.7 30.0 27.4 +2.6
2 2 37.5 32.0 +5.5 30.0 33.7 -3.7 45.0 43.1 +1.9
1 1 75 57.0 +18.0 60 55.8 +4.2 90 73.7 +16.3

There is no doubt that the mul-Apin table referred to equinoctial time after sunrise, but 
there remains the problem with the one cubit length for the winter solstice. For the 
summer solstice and the equinoxes the length of shadow, when respectively 60° and 75° 
from rising, would be 0.9 and 0.7 cubits, both close enough to be rounded to 1 cubit. At 
the winter solstice the shortest shadow is 1.57 cubits, on the meridian, but it is only 74° 
from rising and therefore far from the 90° of the constant. It is reasonable to consider that 
it ‘was presumably added for reasons of symmetry and to show the value of the constant 
for that solstice’ or the measurements were a little further south.154

Hunger and Pingree claimed that ‘we must regard the table as based on mathematical 
manipulation rather than on observation’.155 Clearly the table incorporates reciprocal 
relationships, but they must also have had a deep practical understanding of the underlying
phenomena (Table 26). The values in the table are after they were forced into the straight 
jacket of the formulae and so it is likely their underlying data was much more precise. For 
the equinoxes the fit is not close, presumably because of the ‘desire to fix the constant (75)
midway between those for the solstices (60 and 90)’.156

From Table 26, for a shadow length of 2 cubits at the solstices, the product of the shadow 
length and the calculated time after sunrise is 67 and 86, compared with the scheme 
constants of 60 (summer solstice) and 90 (winter solstice).. Figure 16 shows the linear 
relationship between time and the inverse shadow length and the solstices and equinoxes. 
For the solstices the linear trendlines indicate ratios of 96 and 56 and also rising H.A. of 
256° and 286°, which correspond to declinations of 20.8° and -23.4° and rising azimuths 
of 65° and 118°. The good fit of the latter, ignoring the 1 cubit value, suggests that the 
scheme was based primarily on the winter solstice with a constant of 90 and that the 60 
and 75 for the summer solstice and equinoxes were derived therefrom.

153 The table shows no values for this shadow length, because of the difficulty of dividing by 7 in the 
sexagesimal system, but it is included here for completeness.
154 Bremner, R.W., The Shadow Length Table in Mul.Apin, in Die Rolle der Astronomie, Graz, 1993, p.370. 
See also Steele J., Shadow-Length Schemes in Babylonian Astronomy, Academia, 2012?, p.11: ‘This entry 
in the scheme is therefore an artefact of the underlying mathematical rule and is, presumably, included in the
text either simply for the sake of completeness or perhaps because it is the value of the constant c for that 
month and so is useful in calculation.’  A little south of Babylon the shadow would be under 1.5 cubits, 
which could be rounded to 1.
155 Hunger H &  Pingree D, Astral Sciences in Mesopotamia, Brill, 1999 p.80.
156 Bremner R.W., op.cit. p.369.



7. The 2:1 and 3:2 ratios for longest to shortest day and the Path of Anu.

People all over the world have used the rising and setting of the sun as markers for annual 
events such as the standstill positions at the solstices.157 Those living in what is now 
northern Iraq were surely no different and would have noted the extreme positions of the 
sun at the horizon. They would soon have realised that these four points, plus the 
meridian, divided a circle into six equal segments. Adding in the east/west line of the 
equinoxes gives segments of 30° and we have noted such bearings at Eridu (Latitude 
30.5°) around -5000 (Page 12 above).  By c.-3100 they were using a star pictogram with 8 
points, so by then they were thinking in segments of 15°.

Figure 17 shows graphically the 2:1 and 3:2 ratios for the longest to shortest days, based 
respectively on azimuth and equinoctial time, at the horizon. The outer time polygon has 
sides of 24 cubits for 36° time. Interestingly the angle, between the solstices and the 
equinox, is 18°, similar to that of the oblique palace wall (17°) and to the divisions 
between the paths of Anu, Enlil and Ea (see footnote 15 above).

Both estimates (15° declination and 17° from due east) for the boundary of Anu stars 
would be correct on a latitude of 28°, which suggests that the width of the Anu band was 
more likely to have been determined in the southern, rather than the northern, part of 
Mesopotamia. Table 27 shows the situation on a latitude of 30° and demonstrates that 
Anu’s limits were probably based on equinoctial times above the horizon with the width 
being 36° or one tenth of a day.158  Figure 17 shows the limits of 7 units from the east/west
line for the Anu band on a latitude of 35° 

Table 27. Latitude 30°. Obliquity of the Ecliptic 23.9°. No allowance for refraction.

Declination Rising  HA Time above
horizon

Rising Az Azimuth swept

degrees degrees degrees degrees degrees

23.9 255 210 62 236

Anu 15 261 198 73 214

0 270 180 90 180

Anu -15 279 162 107 146

-23.9 285 150 118 124

Anu range 18 36 34 68

Solstice range 30 60 56 112

Solstice ratio159 1.4 1.9

Each 24 cubit side corresponds to 36°(time), giving a ratio of 1.5° per cubit, which with a 
double cubit would increase to 3.0°. Such a unit would approximate to the ratios implicit 

157Thurston H., Early Astronomy, Springer-Verlag, New York, 1994, pp 10/11.
158On a latitude of 35°, lines of stars with declinations of  ± 15° would rise 18° from due east and their time 
above the horizon would be 202° and 158°. The tangent of 18° is 1/3, which would have been an attraction.
159The ratios of 3:2 and 2:1 on latitude 35° were 2.8:2 and 1.9:1 on latitude 30°.



in HS345, summarised as 51 units from the ‘Stars’ to Bootes and a further 7 units to 
Scorpio.160 This is particularly true if the ‘Stars’, in this instance, should be identified not 
as the Pleiades but as the Hyades, at least for the overall distances to SUPA and the 
Scorpion.

Table 28. Summary of tablet HS245, the Hilprecht Text (R.A. for -1600)

Exemplary Star R.A. Degrees
from Hyades

Distance Ratio

degrees degrees units degrees/unit

Stars η Taurus (Pleiades) 8 -11

θ Taurus (Hyades) 19 0

SUPA α Bootes 172 153 51 3.0

Scorpion α Scorpio 197 178 58 3.1

Table 29 summarises the evolution of ideas about the ratio of the longest/shortest day. It 
does not include HS245, which pushes the 3:2 ratio back to the Old Babylonian period..

Table 29, Horizon measurements on Latitude 35°, Obliquity 23.9°, no allowance for 
refraction

Azimuth
swept

Cubits
swept

hexagon

Cubits
swept

Stepped
curve

Hourlines 
Hor. Dial

Text
BM1717

5 +
17284161

Text
mul.Api

n

Text
mul.Api

n

Text
Ivory
Prism

Length of
Daylight

Degrees
azimuth

Cubits
along
sides

N/S
cubits

Degrees
from

meridian

none minas beru beru Degrees
time

Approx.
date

-5000? ? <-700 -1800 -1000 -1000 <-610

S.
Solstice

240 96 96 120.7 4 4 3.6 8 216

Equinox 180 72 72 90 3 3 3 6 180

W.
Solstice

120 48 48 60.4 2 2 2.4 4 144

Ratio 2:1 2:1 2:1 2:1 2:1 2:1 3:2 2:1 3:2

Ratio
degrees
per unit

1 2.5 2.5 1 60 60 30 30 36

In 1947 Neugebauer was clearly taken with the idea of the 2:1 ratio for the longest and 
shortest days being based on the use of a water clock, but by 1975 he was rather more 
cautious.162 He refers to ‘the assumption that the given weights represent the outflow of 
water from the bottom of a cylindrical container...’. It was only an assumption and in 1996

160Hunger H. & Pingree D., Astral Sciences in Mesopotamia,  Brill, Leiden, 1999, p.54
161Hunger H. & Pingree D. Mul.A[pin, AfO, Horn, Austria, 1989, p 163.
162Neugebauer O., The Water Clock in Babylonian Astronomy,  1947, ISIS 37, pp37/43 and HAMA, 1975, p
708.



Hoyrup drew attention to the problems with the water clock model.163In 2000 Michel-
Nozieres concluded that ‘the water weight data … cannot be taken literally’.164  In spite of 
Hoyrup’s work, Hunger and Pingree in 1999 stated that ‘1 mina of water in a water-clock 
measured a third of an equinoctial night’, with no caveats.165

In mul-Apin the ratio is associated with minas, normally a measure of weight, equivalent 
to about 500 gms.166 From school problems from about -1800 we learn of water flowing 
from a water-clock. However the existence of water-clocks does not mean that a ratio 
established over millennia, was immediately discarded.

The study by Michel-Nozieres of the problems inherent in outflow clocks found that under
the best conditions, the ratio would approximate to√2 :1, which is far from 2:1. In fact , 
expressed as 2.8:2, it is obviously much closer to the 3:2 ratio in time.

The 2:1 ratio appears later (pre -611) on an ivory prism as a ratio of angles, expressed in 
beru (30°) and us (1°), so this same ratio was, in different texts over more than a 
millennium, based on unstated units, units of weight and units of angle or time.  We also 
have to bear in mind the use of ninda, normally a unit of length, in mul.Apin. After the 
summer solstice (II I 11/12) ‘the sun … turns and keeps moving towards the  South at a 
rate of 40 NINDA per day’ and after the winter solstice (II I 17/18) ‘the sun … turns and 
keeps coming up towards the North at a rate of 40 NINDA per day’.167 In the same section 
there is reference to the length of the watch in terms of minas, so we appear to have a 
mixture of units of weight and length.

If, at the time of mul=Apin and before, they could measure time accurately enough in 
equinoctial units to confirm the 3:2 ratio, it seems somewhat perverse to use 
simultaneously a 2:1 ratio of weights, unless the two ratios were never intended to refer to 
the same phenomenon or were not established at the same latitude. 

To resolve this issue perhaps we need to take a different approach. When experimenting 
with water clocks they might have tried weighing the water dripping into a bowl until the 
scales tipped.168 This would justify measuring the quantity of water by weight rather than 
volume. If they were measuring the time for the sun to traverse a large segment of the 
horizon they might have noticed that it was like the bow wave of a swimming duck. This 
would justify the association of weight and ducks, with many standard weights being in 
the form of a duck.169 However it would imply that ‘mina’ in addition to its usual meaning 
of weight was also a segment of a circle. With 6 minas in a full day, each would 
correspond to 60°. There is further discussion of minas below (p.57)

The 3:2 ratio is extraordinarily precise for northern Mesopotamia. To understand how this 
might have been achieved, we assume they were aware how the ‘shadows’ of stars, with 

163Hoyrup J., A note on water-clocks and on the authority of texts (pre-print 1996), AfO, 44-45, 
164Michel-Nozieres C., Second Millennium Babylonian Water Clocks: a Physical study, Centaurus 2000, 
Vol.42 pp 180/200.
165Hunger H. & Pingree D., Astral Sciences in Mesopotamia,  Brill, Leiden, 1999, p.46
166Hunger H. & Pingree D, Mul.Apin, An Astronomical Compendium in Cuneiform, AfO, Horn, Austria 
1989, pp 163/4 (Appendix). The tablets are dated to the old Babylonian period c.-1800.
167Hunger H. & Pingree D., Mul.Apin op.cit pp 72/75.
168In Portugal many years ago I saw an old domestic water meter which used such a system. When one bowl 
filled the flow was diverted to fill the other. Each switch being counted to determine the volume.
169A water clock with sinking bowls would also remind them of ducks, with both likely to dive suddenly.



the same R.A., cross the meridian simultaneously and rotate, in a sensibly straight line, 
around the ’pole’ on the ground.170 

In mul-Apin the King (α Leo ) is said to rise with the Bow constellation, identified with 
the southern part of Canis Major.171 As it rises just 2 minutes ahead of α Leo, o2 CMa was 
chosen as the exemplary star for the Bow172. Although not especially bright It is part of 
‘one of the most luminous pairs in the heavens’.173 Significantly the declinations of the two
exemplary stars are close to those of the sun at the solstices and so their ‘shadow’ paths 
could be seen as proxies for the paths of the sun’s shadows at those extremes.174 

Successive positions of the two stars, as seen from a latitude of 34.75 (44°east) in -1000 
are summarised in table 30 below and their ‘shadows’ are illustrated in Fig.23.175

Table 30. ‘Shadow’ positions of α Leo and o2 CMa in -1000, when the obliquity of the 
ecliptic was c. 23.8°. Observer on Latitude 34.75° and 44° east. Data from SkyMap Lite 
2005.

o2 CMa R.A. 74.7° Decl. -23.8° α Leo R.A. 110.0° Decl. 22.8°

Row Position Azimuth Time to
transit

Hr-line
angle

Azimuth Time to
transit

Hr-line
angle

degrees degrees degrees degrees degrees degrees

1 Both on
E.

horizon

119.4 72.8 61.5 61.5 107.5 61.1

2 o2 CMa at
transit

180 0 0 101.7 35.3 22.0

3 α Leo at
transit

215.0 35.4 22.0 180 0 0

4 o2 CMa
on W

horizon

241.0 73.0 61.8 260.2 37.7 23.7

The two stars rise together in the east, but o2 CMa reaches the meridian first (row 2 in 
Table 30) when α Leo is 35.3° in time from the meridian.176 Drawing a line from the ‘pole’
to the ‘shadow of  α Leo indicates the hour-line angle for that time difference. It can be 
mirrored by a similar line on the other side of the meridian so that when α Leo reaches the 
meridian (row 3) the ‘shadow’ of o2 CMa. will lie on it.

170 We have shown that in Egypt they were seemingly beginning to show an interest in the’ pole’ at 
Hierakonpolis 
c. -3000 (p. 21 above) and by the time of the pyramids they were familiar with the geometry around the 
‘pole’ (p. 30 above).
171 Hunger H. and Pingree D., Mul-Apin, Horn, Austria, 1989 p.140, Table 1 (Tablet ii.44).
172 Based on Sky Map Lite 2005  o2 Cma rose 2 minutes before α Leo and δ Cma 14 minutes after. The latter
would have been the more appropriate if the observer was on the lower latitude of 32.5°. 
173 Dibon-Smith, Star List 2000, John Wiley & Sons, 1992, p.44, note k.
174 In -1000 the obliquity of the ecliptic was c.23.8°
175 The latitude of 34.75° is propitious because several hour-line angles are particularly attractive: Hour-line 
angles of 22.5°, 30°, 45° & 60° equate to times to transit of 36.0°, 45.4°, 60.3 °& 71.8°
176 At that moment α Cmi (R.A. 75.1°) would also be very close to the meridian and the ‘shadows’ of δ Vel 
(R.A. 110.1) & λ Vel (R.A. 109.9°) would be almost perfectly aligned with that of α Leo on the same 
hour-line angle.



By the time o2 CMa is setting in the west (row 4) α Leo is 37.7° from the meridian and its 
hour-line angle would be 23.7°, just outside the previously marked radial line for 22.0°. o2  

CMa moved from one horizon to the other in two equal steps, divided by the meridian, 
while α Leo moved in three similar steps with the two radial hour-line angles for 35.3° 
dividing them. We now know that the first two time  divisions are c.72.8° and the other 
three c. 72.2°, 70.6° and 72.2°, but at the time  it would have been justifiable to consider 
they were all sensibly the same. With the longest night paired with the shortest daylight a 
full day would have 5 similar steps and the ratio of the longest and shortest days would be 
3:2 with each step being precisely 72°.

Although we have referred to time measurements a ratio of 3:2 could have been logically 
deduced solely from the positions of the star ’shadows’ in relation to hour-line angles. 
c.22° either side of the meridian, without any direct measurement of time. 

This is not to infer that they were incapable of handling time degrees and in the, albeit 
later, tablet BM29371 there is a column which explicitly gives half-day lengths as 72° and
108° at the winter and summer solstices.177 Furthermore there is another column, with no 
heading but with ‘kila’ in the first line, which runs from 1 to 1.5, suggesting that possibly 
‘kila’ was equivalent to 72° (time).

177 Walker C., Astronomy before the telescope, British Museum 1996 p.47 and see also Brown D., Fermor J.,
and Walker C., The Water Clock in Mesopotamia, Archiv fur Orientforschung, They note the early 
appearance of the 3:2 ratio in a seventh century B.C. version of mul-apin.



8. Djed Pillar and Time Measurement.

The vertical Djed pillar in Figure 14 vaguely hints that it might be related to the 
measurement of time using a horizontal sundial. On the other hand Figure 18 shows a 
modern drawing of the hour-lines for an east-facing vertical sundial with a style aligned to
the pole and also a Djed pillar at Abydos (latitude c. 26°) inclined at c. 25°  from the 
vertical and surmounted by twin plumes.178  The two are remarkably similar. The width of 
the ‘pillar’ corresponds to the length of the style and the hour-line positions depend on the 
height of the style away from the meridian plane. In this type of vertical dial the longest 
shadows are at mid-day and the shortest at the horizon. The ’pillar’, on which the shadows
fall, is inclined from vertical at an angle corresponding to the latitude of the site.

The Djed pillar symbol itself dates back to pre-historic times, but this does not imply that 
it was always associated with the measurement of time.179 It could be that when this type 
of sundial was developed, someone noticed that the shadow lines looked like a leaning 
Djed pillar, whatever that might have been. The ritual of ‘raising the djed pillar’, is known
from the Old Kingdom at Memphis, which suggests the possibility that the association 
with time was established by say 2500 BC.180 This date coincides with the growing 
importance of the east/west line (cf Menkaure’s pyramid causeway) and the size of the 
mortuary chapels and other buildings immediately east of pyramids.

The Djed pillar symbol, and presumably its dialling properties, reached Mesopotamia 
from Egypt around -1800181. From about -500  there is a shadow table (BM29371) with 
intervals of 5 days, against each of which is written ‘One cubit shadow, 1 2/3 double-hours 
day’.182 This has been interpreted as meaning ‘after 1 2/3 double-hours of day the shadow 
of the gnomon has a length of 1 cubit’, throughout the year. If 1 2/3 double hours equates to
50° (time), then an east-facing vertical gnomon with a style of 5/6 cubit, would have a 
shadow of 1 cubit.183

9. Ready Reckoner for converting rising azimuth to rising time.

There is an alternative to the concentric polygons in Figure 17. We have already noted the 
stepped curve for the linear measurement of azimuth, so it is likely they would have 
sought a similar curve for the measurement of time. On a latitude of 35° the rising sun at 
the solstices would be 36° (time) apart and approximately +/- 30° from due east184. On the 
stepped curve for azimuth, the sun would be 12 (30/2.5) cubits north or south of due east 
and for that same N/S distance to suspend 18° (time), the distance along the east/west line 

178Cousins F.W., Sundials, Redwood Press, Trowbridge, 1972, p.132 and Lurker M., The Gods and Symbols 
of Ancient Egypt, Thames and Hudson, London 1982, p.47. There is a large ancient Greek sundial with 
similar curves at the British Museum (ref:1816,0610.186). It is inscribed ‘Phaidros, son of Zoilos’.
179Shaw I. and Nicholson P., British Museum Dictionary of Ancient Egypt, London, 1997, p.86. On page 
304, they mention the possibility that the was sceptre was used as a gnomon and it might be seen as stripped 
down version of a vertical dial, facing east or west, with the angled head pointing to the pole.
180Lurker M., op.cit, p 47.
181Black J. & Green A., Gods, Demons and Symbols of Ancient Mesopotamia, British Museum, 1992, p.74.
182Britton J. & Walker C., Astronomy and Astrology in Mesopotamia (in Astronomy before the Telescope), 
British Museum, 1996, p.47.  More recently in Steele, J. Shadow-Length Schemes in Babylonian 
Astronomy, Academia, 2012? pp 30ff there is a different interpretation of the text.
183The calculation is Tan 50 x 5/6.
184On a latitude of 35° and an obliquity of 23.8°, the sun at the solstices would rise 29.5° north or south of 
the east/west line and would take 90 +/-18° (time) to reach the meridian. The ratio of the longest to the 
shortest day would 108/72 or 3/2, an ancient Babylonian norm.



would be 36.9 cubits.185 Rounding down to 36 cubits and, assuming 2° per cubit, would 
indicate a time difference of 18° between an equinox and a solstice. It would be a simple 
matter to increase the dimensions of the stepped curve by 25% and rotate it so that the 
long axis lay due east/west. With each east/west cubit equalling 2° time, the furthest point 
would be 45 cubits from the centre, corresponding to 90° of time to the meridian at the 
equinoxes (Figure 19).  The section of the time curve between solstice and equinox is 
sensibly linear, lying between +/-12, 36 and 0,45 and resembles the hypotenuse of a 3,4,5 
triangle, scaled up by a factor of 3.

There would be near linear relationships between declination, rising time and rising 
azimuth and also the cubit measures of rising time (at 2.0°) and rising azimuth (at 2.5°) It 
would exploit the linear relationship between rising azimuth and time to the meridian by 
using both of the two ancient norms for the ratio of degrees per cubit.186 Table 22 
demonstrates how closely the results of such a ‘ready reckoner’ would match modern 
calculations. 

The proposed time curve does not allow measurements across the east/west line. For any 
body with positive declination and rising north of that line, it is necessary to add 45 cubits 
to the equatorial distance. For the summer solstice this means adding 45 and 9 to give 54 
cubits. Graphically this is like measuring to a mirror image, shown dashed in Figure 19. 
At the winter solstice the distance is 36 cubits, a difference of 18 cubits or 36° (time).

If correct, the ready-reckoner must surely represent a high point in the use of linear cubits 
to represent angles. However it does have a disadvantage: The three months between 
solstice and equinox are not distributed evenly along the 15 cubit hypotenuse with the 
divisions between them being at 7.1 and 12.6 cubits from a solstice. This can be remedied 
by changing the X-axis from cubits to days.

In a schematic year of 360 days, there are 180 days or 180° longitude, between solstices, 
so the average daily change in time, would be 18/180 cubits equivalent to 0.2 cubits or 12 
minutes. Each east/west cubit would equal about 10° longitude.  However using longitude 
(or days), as shown in red in Figure 19, means the loss of the near linear relationship 
between rising azimuth and rising time, when working solely in cubits.

18512/Tan (18) equals 36.93 cubits.
186The ratio between time and azimuth is about 0.6 for latitudes 32.5/38° and 0.5 for 25/30°. The latter would
require a pair of stepped curves with ratios of 2° (time) and 3°(azimuth), instead of 2.5°. The assumed 
solstice positions being 27° from due east and 13.5° (time) from an equinox, both correct about 27.5° 
(latitude).



Table 31. Columns 1/5 are modern calculations for 35° latitude, 23.8° Obliquity, with no 
allowance for refraction. Column 6 is azimuth from winter solstice (assumed to be at 60° 
from the meridian) divided by 2.5. Column 7 is column 6 times 1.5 (0.75 x 2), Column 8 
is the difference between modern calculations and the ‘ready reckoner’. Column 9 is the 
daily change and Column 10 is the similar modern calculation.

Long RA Decl. Time
from

solstice

Rising
Azimuth

Rising
Azimuth

from
W.S.

Time
from

winter
solstice

Differen
ce

Daily
Change

Daily
modern

calculation

1 2 3 4 5 6 7 8 9 10

degrees degrees degrees degrees degrees cubits degrees minutes minutes minutes

0 0 0 18 90 12 18 0

1 0.9 .4 17.7 89.5 11.8 17.7 -.1 17.7 16.9

15 13.8 6.0 13.8 82.7 9.1 13.6 -0.7

16 14.7 6.4 13.5 82.2 8.9 13.3 -0.7 17.0 16.5

30 27.8 11.6 9.7 75.7 6.3 9.4 -1.0

31 28.8 12.0 9.4 75.3 6.1 9.2 -1.1 15.8 15.7

45 42.5 16.6 6.0 69.6 3.8 5.8 -0.8

46 43.5 16.9 5.7 69.2 3.7 5.5 -0.8 13.2 13.7

60 57.8 20.5 2.9 64.7 1.9 2.8 -0.1

61 58.8 20.7 2.7 64.5 1.8 2.7 0 9.6 10.4

75 73.7 22.9 0.8 61.6 0.6 1.0 0.8

76 74.8 23.1 0.7 61.4 0.6 0.9 0.8 5.1 5.7

85 83.5 23.7 0.1 60.7 0.3 0.4 1.1

86 84.5 23.7 0.1 60.6 0.2 0.4 1.1 1.8 2.0

90 90.0 23.8 0 60.5 0.2 0.3 1.1

91 91.1 23.8 0 60.5 0.2 0.3 1.1 -0.2 -0.2

The x-axis covers 90° longitude (or days) and the y axis the rising azimuth in cubits, 
equalling 2.5°. At 30 day intervals the y axis values (Table 23, col.6) are 12, 6.3, 1.9, 0.2 
cubits, implying respectively 0.19, 0.15 and 0.57 cubits/day on average. The three initial 
values in the Jupiter tablets are 12, 9.5 and 1.5 minutes or 0.2, 0.16 and 0.25 degrees.187 
The match is least satisfactory around 20° before a solstice. 

At first sight, the Jupiter values closely match those for the sun in Table 31, particularly if 
the latter represent 30 day averages, and provide support for the ‘ready-reckoner’ 
hypothesis. The overall slope of the curve is dictated by the relative size of the two 
stepped curves and the closeness to the Jupiter values suggests that they were indeed using
2.5° and 2° per cubit for the sun. However closer inspection shows that firstly, as already 

187Ossendrijver. M, Ancient Babylonian astronomers calculated Jupiter’s position from the area under a 
time-velocity graph, Science Vol. 351, Issue 6272 pp 482/4, Jan 2016. His figure 2 shows three values 
beginning at 12 minutes per day, with 9.5 and 1.5 minutes per day 60 and 120 days later. The first equals the
average rate of change, between solstices, of 36° in 180 days, mentioned earlier.



noted, one refers to time and the other to linear cubits and secondly the number of days 
between the extreme values are 120 and 90. Ossendrijver has demonstrated that they were 
measuring time rather than rising azimuth and we must therefore consider the possibility 
that they were measuring both and the Jupiter data was of particular interest, at the time, 
precisely because the numerical values were similar to those of the sun, albeit using 
different units, over different time spans. Table 32 summarises the data.

Table 32. Jupiter’s path for the 120 days before a specific first standstill position, when 
Jupiter is close to the sun in mid-winter. The basic data is for 12/12/2018 to 11/4/2019, but
applied to a latitude of 35°, with 23.8° for the obliquity of the ecliptic. The data for the sun
is from Table 31 (col.6).

Jupiter (R.A.) Sun (rising time)

Days before
standstill

R.A. Change R.A.
to next day

Jupiter tablet
values

Days before
Winter
Solstice

Av. Change
over 30 days,  in

N/S cubits 

degrees minutes ? days 1/60th cubit

120 245.9 13.8 12.0 90/60 11.4

90 252.6 12.6

60 258.4 10.2 9.5 60/30 8.8

30 262.4 5.4

0 263.9 0 1.5 30/0 3.4

Furthermore on this small part of its orbit Jupiter moves 18° R.A. in 120 days while the 
sun’s rising time changes 18° in 90 days.

10. Orientation of Temples etc in Upper Egypt.

Temples and Perimeter Walls at Karnak

Firstly we need to appreciate how the Egyptians handled slopes or angles. They used 
seqeds which we would now describe as cotangents or inverted tangents.188 This is similar 
to how a modern roofer draws the desired angles, using a 'square', before cutting his roof 
timbers or how hill slopes used to be described as, for example, 1 in 10.189

Shaltout and Belmonte  give the azimuth of three 18th Dynasty temples in the Amon 
precinct as 116.75° and that of Montu as 27°, which can be considered as 26.75° from due 

188Gillings R.J. Mathematics in the Time of the Pharaohs, Dover Publications, New York (1982) p185
189Lehner M., The Complete Pyramids, Thames and Hudson, London (1997) p210 illustrates an ancient ' 
Egyptian square' and Draper J.T. The Steel Square applied to Roof Construction, The Technical Press Ltd., 
London (1930) gives the tangent ratios for 116 different angles between 29.92° and 78.68°.



east and 27° from north.190 These orientations are similar to the main alignments at Nabta 
Playa, three millennia earlier, with the cotangents of the angles being close to 2 (26.6°).191

The orientation of the Mut temple is given as 18° with a cotangent close to 3 (18.4°), 
which is similar to the 18.5° for a line of post holes at Hierakonpolis, two millennia earlier
(see above p.21).

There are several reasons why ancient Egyptians might have found these two angles 
attractive:
a. simple cotangents ratios: 2 for 26.565° and 3 for 18.435°,
b. their sum is exactly 45°, or half a quadrant, with a cotangent of 1,
c. the difference between them is 8.130° with a cotangent of 7,
d. the two angles, 26.565° and 18.435°, are half those in the simplest Pythagorean triangle,
with sides in the ratio 3,4 & 5. Those angles, 53.13° and 36.87°. have cotangents 3/4 and 
4/3,
e. The larger of the two angles is close to the rising angle of the mid-winter sun, which 
reported recently corresponds to c. 26.8° from due east.192 With the small change in the 
obliquity of the ecliptic we can conclude that at the time the rising angle would have been 
closer to 27.3°,193

f. At Karnak the celestial pole had an altitude of 25.72° and the mid winter sun would 
have transited at an altitude of about 40.4°, with a tangent ratio close to 6/7 (40.6°), and in 
mid-summer at 88.2°, close to the zenith.
g The main temple axis was perpendicular to the Nile.

The first four reasons are mathematically exact whereas the last three are dependent on 
geographic latitude. However cotangent 2 was also employed some distance north and 
south of Karnak, including Timna (latitude 29.77°) and Abu Simbel (latitude 22.34°).194  
There the rising azimuth of the mid-winter sun would differ from that at Karnak by  +1.1° 
at Timna and -0.75° at Abu Simbel. So, even though making cotangent 2 even more 
attractive, the prime justification for the precise layout at Karnak was the geometry. At 
Karnak an azimuth of 116.75° was found to correspond to the rising of a celestial object 
with a declination of -24.2° (see Table 32).

Most of the temples listed by Saltout and Belmonte fall into one of two groups with 
cotangents of 2 or 3, corresponding to azimuth angles, from a cardinal direction, of 
25.5°/28.0° and 17.5°/19.5°, but two imply cotangents of 1.5 and 2.5 (see below for 2.4 
for the southern part of the Amon perimeter wall).195

190Shaltout M. and Belmonte J.A., On the Orientation of Ancient Egyptian Temples: (I) Upper Egypt and 
Lower Nubia, Journal for the History of Astronomy, xxxvi (2005) 273-298, Table 1. They list 23 temples, 
but some later ones have been omitted to focus on a shorter time frame. They note two temples of the 11th 
Dynasty at Thoth Hill and Deir Bahari, with azimuths of 117° and 118.25° respectively, but by the 18th 
Dynasty a third of all the temples had orientations to the cardinal directions between 25.5°/28.5°. The 
frequency falls thereafter.
191Malville J.M.,Schild R., Wendorf F. & Brenmer (sic) R., Astronomy of Nabta Playa, in Holbrook H. et al, 
African Cultural Astronomy, Springer (2008), 131-143, 137.
192Furlong D., Egyptian Temple Orientation (part 2), www.davidfurlong.co.uk/egyptarticle gives the main 
temple alignment of 296°53' or 296.88°. Averaging that with he 116.75°, in the opposite direction, from 
Table 32 gives 116.82°.
193Bretagnon P., Rocher P{. & Simon J.L. (1997) Theory of the Rotation of the Earth, Astronomy & 
Astrophysics 319 (1997) p305-317.
194For the Abu Simbel details see footnote 180 above and for Timna see Belmonte J.A. et al , On the 
Orientation of Ancient Egyptian Temples (5), Journal for the History of Astronomy xli (2010), 1-29, Table 
1.
195The angular difference between cotangents 2.4 and 2.5 is 0.82°.



Table 33. Details of sixteen, mainly 18th Dynasty, Temples at Karnak (Lat. 25.72°).The 
basic data is from Shaltout and Belmonte's Table 1 (see footnote 180), but omitting six 
later temples and reordered with descending cotangents.

Temple Dynasty Azimuth Azimuth from
N, E, S or W.

Horizon
Altitude

Declination Cotangent (Az)

degrees degrees degrees degrees ratio

Kamutef 20 287.5 17.5 3.5 17.2 3.17

Boat Station 18 107.5 17.5 0 -16 3.17

Mut 18 18 18 2.0 60.4 3.08

Khonsuupakherd 18-21 289 19 3.5 18.5 2.90

Rameses III 20 19.5 19.5 2.0 59.5 2.82

Amenhotep II 18 291.5 21.5 3.5 20.8 2.54

Maat 18 205.5 25.5 4.0 -51.5 2.10

Sethy II 19 206 26 0 -54.5 2.05

Ramesses III 20 26.5 26.5 0 53.3 2.00

Amon (main) 12/19 296.75 26.75 3.5 25.4 1.98

Sun High Place 18 116.75 26.75 0 -24.2 1.98

Hatshepsut 18 116.75 26.75 0 -24.2 1.98

Re- Horakhty 19 116.75 26.75 0 -24.2 1.98

Montu 18 27 27 0 53.0 1.96

Raet-tawy 18 28 28 0 52.3 1.88

Ptah 18 304.5 34.5 3.0 32.0 1.46

The perimeter wall is dated to the 30th Dynasty, more than a millennium after many of the
temples in Table 33. The western and eastern sections are perpendicular to the main axis 
of the temple complex and consequently have the same cotangent of 2 for their orientation
to the meridian.

In Figure 20 right-angled triangles were drawn, using cotangent 2, with the two parallel 
sides of the wall as hypotenuses. Their short sides were then extended to produce right-
triangles on the northern and southern sides. with cotangents 1.5 and 2.4 and an inner 
rectangle with sides oriented to the cardinal points.  The meridian through its centre cuts 
the main axis near the western face of the 4th pylon, constructed by Thutmose I.196

Three published plans of the layout at Karnak were examined to see how closely they 
matched the theoretical values, particularly of the four corner angles, and that in Shaw and
Nicholson, was the closest with only a small difference in the southern corners.197 It is the 
basis for the simplified drawing in Figure 20, which is drawn with the perimeter corner 
angles in accordance with the theory. Its western and eastern sections are parallel and with

196Wilkinson R.H., The Complete Temples of Ancient Egypt, Thames & Hudson, London (2000) p.158
197Shaw I.,& Nicholson P., British Museum Dictionary of Ancient Egypt, London, 1997, p.147 Plan of 
Karnak.



the main temple axis perpendicular to them both. That axis is 26.565° from due east or 
116.565° from north.  Shaltout & Belmonte recorded four temples oriented 
116.75/296.75° and with Furlong's figure of 116.88 ° gives an average of 116.8°.

The two obtuse angles in the NE and SE exceed 90° by 7.125° and 3.945° with cotangents
of 8 and 14.5 respectively.

For the Mut complex a triangle with cotangent 3 was visualised with its small angle in the 
middle of the third court. It aligns with the causeway and axis of the Mut temple and also 
the western side on the avenue leading to Luxor.198  The perimeter wall there is not so 
carefully laid out. The eastern section is parallel to the similar wall of the Amun precinct, 
but the western wall is misaligned by over 1°, which makes it more difficult to determine 
the intended orientations, but it is possible the layout had the same two triangles on the 
west and east with, on the north, a triangle incorporating a cotangent of 3, while on the 
south the triangle may have incorporated an angle with a cotangent of c. 1.08, possibly 
13/12 (42.71°).

The azimuth angles have simple cotangent ratios. Consequently they do not necessarily 
imply direct astronomical associations, but they may well do so indirectly. When an 
interesting azimuth was observed, it had seemingly first to be associated with the nearest 
angle with a known cotangent ratio before any monuments were actually built. This was 
presumably because accurate construction without such known ratios would have been 
more difficult.

It has been shown above that at Hierakonpolis they had already recognised three 
Pythagorean triangles with ratios of the sides: 3, 4 & 5, 5 12 &13, 9, 40 & 41, but at 
Karnak they had progressed beyond the few such simple ratios. By the 12 or 13th 
Dynasties, they were calculating square roots, but it is not essential to assume that they 
were doing so at Karnak.199 Within say a 3,4,5 triangle to provide an accurate right angle, 
they could have experimented graphically with different lengths of side to find 
hypotenuses with preferably integer digit values or at least simple fractions of a digit. 
With the length of the hypotenuse thus determined, they could prepare a loop of rope with 
a length equal to the sum of the three sides and with marks for the three corners. 
Stretching the loop around two posts, marking the ends of one side and aligned with a 
chosen direction, would determine the third corner. Reversing the rope to the other side 
would give the fourth corner, thus ensuring both the proportions and orientation were 
correct. It is reminiscent of the "stretching the cord" ceremony for laying out a ground 
plan, known from the earliest dynasties.200

The main elements of the temple layouts must have been established by the time of the 4th
pylon or at least the erection of the nearby obelisks by Thutmose I and his daughter, 
Hatshepsut .

When much later the perimeter wall was built existing structures were demolished to 
allow the construction of the eastern section, which we have considered as being one of 
the two prime axes at right angles to the main temple alignment. Certain features marked 
two meridian lines: one from the north-western corner to where the south-eastern corner of
the Fourth Court met the southern perimeter wall and the other from the south-eastern 

198The latter is not shown in Fig.20, but appears in a satellite image in Egyptian Archaeology 61, p.11.
199Gillings R.J. Mathematics in the time of the Pharaohs, Dover Publications, New York (1982)
200Clagett M., Ancient Egyptian Science, American Philosophical Socirty Vol.3 (1999) p.5



corner to the gateway in the middle of the northern section near the temple of Ptah.  The 
inner core of that temple was constructed by Thutmose III, implying its foundations were 
a little earlier.

 Within the temple structures themselves the best indicators of the meridian would be the 
diagonals across the Great Hypostyle Hall and the Festival Hall of Thutmose III, as 
indicated in Figure 20.

The 10th pylon, eventually incorporated in the southern perimeter wall, was built in the 
time of Horemheb, at the end of the 18th Dynasty. 201 The alignment of the northern 
perimeter wall is the same at that of the Ptah temple, built earlier in the 18th Dynasty. The 
main axis was clearly defined by the time of Thutmose I, but may have originated earlier. 
Therefore although the perimeter wall itself was only built in the 30th Dynasty the 
alignments of each of its four sides are the same as those of older structures. 

In -1500 the obliquity of the ecliptic was 23.87°, 0.4° greater than at present, which 
implies a higher rising azimuth of c.0.5° for the mid-winter sun. The main axis of the 
Karnak temples lies on a bearing of 116.8° and, according to Furlong's photograph, is 
currently aligned with the solstitial sun. The estimated azimuth of the midwinter sun, at the
time, must have been nearer 117.3°. The difference of 0.7° between that value and 116.6°, 
might be due to an error in their estimate of the true meridian or was the closest they could
get with a familiar cotangent.

Conclusions.

The layout of the Amon precinct at Karnak was based on right-angled triangles with 
simple cotangents. Although the main axis was in close alignment to the rising of the mid-
winter sun, that alone was an insufficient justification for its orientation. There was also a 
prerequisite to identify a right-angled triangle, with a known cotangent ratio, which, as 
closely as possible, aligned with the rising of the sun or other body. Only then were the 
temples actually laid out. This would have helped ensure the buildings were rectangular, 
with the correct proportions and desired orientation.

The Egyptians were clearly masters of geometry, as Strabo claimed. The layout of the 
Karnak temples and walls was surely the acme of the system of using cotangents , or 
seqeds, to describe angles. After millennia the system was coming to the end of its useful 
life and giving way to less simple cotangents and Pythagorean triangles and eventually to 
the direct measurement of angles, culminating in there being 360° in a circle. Before then 
Posidonius referred to 'parts', 1/48th of a circle or 7.5°, and interestingly the cotangent of 
7.5° is 7.6, so providing a possible link to the older system.202

The orientation of temples in Upper Egypt (including Karnak), prior to the 
Ptolemaic period.

This study is based on the azimuths of 106 structures recorded by Belmonte et al, with 
their azimuths adjusted to angles, measured either clockwise or anti-clockwise from a 
cardinal direction.203 Consequently their absolute overall range is from zero to 45°, the 

201Wilkinson op.cit. p.161.
202Neugebaquer O., A History of Ancient Mathematical Astronomy, Part 2, Springer-Verlag, New York 
1975, p.671.
203Shaltout et al in (footnote 180) listed 133 structures, which was supplemented by a further 34, south of the
29th parallel, from Belmonte J.A. et al, On the Orientation of Ancient Egyptian Temples (4), Journal for the 



maximum smaller angle in a right-angled triangle. Their dates run from the Archaic period
to the 30th Dynasty.204

Overall there were 53 different absolute bearings.205 The most frequent were 26.75° (7 at 
Karnak and Abydos, all before the end of the 19th Dynasty) and 42.5° (8 at M.Habu, 
Abydos, Beit el wali, Karnak, Luxor and Qurna all from the 19th Dynasty or later).  Not 
only were these the most common, there were also many others close in bearing : 20 
between 25.5°/27° and 21 between 41.5°/43.5°. Of our total of 106, 41 were in these two 
narrow bands.

Absolute azimuths, 40° or over, were 20% of the total in the 18th Dynasty, 36% in the 
19th and 50% in the 20/29 Dynasties, but by the 30th there were none. The earliest 
recorded use of angles between 41° and 45° can be seen in Table 34. 

Table 34. The largest different absolute angles employed in the layout of 28 temples, out 
of a total of 106. The two from Kom el Ahmar, within square brackets, were considered as
being too early.

Short side
length
(angle)

Belmonte et al
angle (no. of
examples)

Reference
publication & table

line number

Location Reign Approx
date

52 (40.9) 41 (2) 1/44, 1/75 Luxor Seti I -1280

52.5 (41.2) 41.25 (1) 4/24 Abydos Dyn 4 -2550

53 (41.5) 41.5 (3) 1/60, 1/101, [4/41] Qurna Ramesses II -1270

54 (42.0)206 42 (4) 1/2, 1/67, 1/104, 1/128 M.Habu Ay-Horenheb -1320

55 (42.5) 42.5 (8) 1/28. 1/43, 1/63, 1/70-72,
1/120, 4/31

Luxor
Beit el Wali

Ramesses II -1270

56 (43.0) 43 (2) 1/62, 1/93 Qurna
El Qab

Thutmose IV
Amenhotep III

-1400
-1390

57 (43.5) 43.5 (3) 1/3, 1/61, 4/18 Abydos
Qurna

Ramesses II -1270

58 (44.0) 44 (1) 1/1 Abydos  Dyn 2 --2700

59 (44.5) 44.5 (3) 1/73, 4/32, [4/42]  Malqata
Abydos

Amon
Khentamentyu

-1270
-1150?

History of Astronomy  (2008) p.185, Table 1. From that total of 167,  61 from the Ptolemaic and Roman 
periods were removed to leave 106.
204There were three from the Archaic (1) and Pre-dynastic (2) periods and 20 later than the 19th dynasty. 
One was undated and seven had a range of dates.
205Applying the same definition of 'absolute' bearings to the slopes of the generally earlier pyramids , eight 
appear to be similar to Belmonte et al degrees (cotangent ratio):  34° (28/19), 35.5° (7/5), 37° (4/3), 37.5° 
(56/43), 38° (14/11), 40° (56/47) 40.5° (7/6), 41.25° (8/7), with the last featuring in Tables 34, 35 & 36 and 
35.5° in Table 35. In all but the last the numerator of the cotangent ratio is a simple fraction of 56, not 60.
206The third and fourth rows with short sides of 53 & 54, with a long side of 60, are close to the fifth and 
sixth  rows in the Plimpton 322 tablet with angles 42.1° and 41.5°.



60  (45.0) 45 (1) 1/59 Qurna Amenhotep II -1420

By the time of Ramesses II, the triangular set-up with a long side of 60 units was clearly in
use for angles between 41° and 45°, where each unit along the short side corresponded to 
0.5°. There are earlier examples, but they do not necessarily require a long side of 60 units.
The 58/60 ratio from the 2nd Dynasty may simply be an imprecise 45°. The 45° angle 
itself may just be a convenient half of a quadrant and the others of 52.5/60 and 56/60 may 
simply be 'nice' cotangents of 8/7 and 15/14.

For absolute angles below 40° there seems to be no evidence that they tried to maintain a 
similar linear relationship between the length of the short side and the angle, by 
progressively increasing the length of the long side from say 60 to 72, 78 and 84 units.

Belmonte et al recorded their azimuths to the nearest 0.25° and their measurements 
include 44 with integer values with a further 4, 50 and 8 including fractions of ¼, ½ and ¾
respectively.207 In this unusual distribution, the overwhelming majority were either whole 
or half integer degrees,  presumably reflecting the original layout precision. 

The 12 examples with the smallest subdivisions are shown in Table 35 and the adjusted 
angles can be associated with Pythagorean triangles, although the two from the 4th and 
11th dynasties are actually closer to simple cotangents.

Table 35. Twelve temples with bearings incorporating ¼ and ¾ fractions of a degree.
Location Dynasty Azimuth/ Abs. Az Cotangent (Angle) Pythagorean Triangle (Angle) Decl

degrees ratio (degrees) side lengths/degrees degrees

Abydos 4 48.75/41.25 8/7 (41.19)208 48/55/73 (41.11) 36.0

Deir Bahari
Elephantine

11 
18

118.25/28.25 13/7 (28.3) 8/15/17 (28.07) -25.5
-24.8

Karnak 29 286.25/16.25 17/5 (16.39) 7/24/25 (16.26) 15.25

Abydos (3)
Karnak (2)

Karnak
Karnak

18
18
19

12-19

26.75
116.75/26.75
116.75/26.75
296.75/26.75

2.0 (26.57) 105/208/233 (26.78) 52.75
-24.2
-24.2
25.4

Abydos 18 31.75 8/5 (32.01) 28/45/53 (31.89) 49.25

Half the azimuths are roughly directed towards the outer limits of the sun's annual 
movement along the horizon, although the overall declination range of 49.6°, from 25.4° 
to -24.2°, is too great. In the 11th Dynasty (-2055/-1985) and at the end of the 18th 
(-1550/-1295) the obliquity of the ecliptic would have been c. 23.9° and 23.8° 
respectively. Of course if the precise orientation of the temples was determined, not by the
actual bearing, but by the associated triangle, then some discrepancy from the true rising 
azimuth is to be expected. The walls of a rectangular structure point in four different 
directions and at Abydos and Karnak similarly oriented temples are recorded as pointing 

207Very few of the recorded values included fractional values less than 0.5°, indicating that when built their 
precision was probably not better than 0.25°.  One of the nine, including the fraction 0.75°,  was 48.75°, 
corresponding to an absolute 41.25°.
208The sides of the 'fort' are 64.7m x 56.7m, with a ratio of 8/7, but, unlike later temples at Karnak, a 
diagonal was not aligned with the meridian. Nekhen News 31.



to 26.75°. 116.75° and 296.75°.209 Whatever was of interest at the horizon it is unlikely 
that they had found an orientation that would fit all three perfectly.

Previously we have noticed an interest in bearings with 'nice' cotangents, such as 2 
(26.565°) and 3 (18.435°) and Table 36 shows that the eleven earliest temples had 
bearings that can be related either to simple cotangent ratios or to angles contained in 
Pythagorean triangles. Before the 11th Dynasty most of the bearings appear closer to 
having simple cotangent ratios.

Table 36 Eleven earliest temples, based on simple Cotangents or Pythagorean Triangles
Belmonte 

et al210
Location Dynasty Recorded Azimuth

(adjusted)
Cotangent/(angle) Diff. Pythagorean

triangle (angle)
Diff.

degrees ratio (degrees) diff. 
degrees

side ratios 
(degrees)

diff.
degrees

1/46 Thoth Hill archaic 119.5 (29.5) 9/5 (29.05) +0.45

4/42 Kom el Ahmar pre-dyn 44.5 1/1 (45) -0.5

4/41 Kom el Ahmar pre-dyn 48.5 (41.5) 8/7 (41.19) +0.31 48/55/73 (41.11) +0.39

4/43 Kom el Ahmar 2 54.5 (35.5) 7/5 (35.54) -0.04

1/1 Abydos 2 46 (44) 30/29 (44.03) -0.03 20/21/29 (43.6) +0.4

4/24 Abydos 4 48.75 (41.25) 8/7 (41.19) +0.06 48/55/73(41.11) +0.14

1/48 Thoth Hill 11 117 (27) 2 (26.57) +0.43 105/208/233 (26.78) +0.22

1/49 Deir Bahari 11 118.25 (28.25) 11/6 (28.61) -0.36 8/15/17 (28.07) +0.18

4/38 W.Thebes 11 121 (31) 5/3 (30.96) +0.04

4/25 Abydos 12 26 (26) 2 (26.57) -0.56 39/80/89 (25.98) +0.02

1/83 Tod 12 145.5 (34.5) 3/2 (33.69) +0.81 160/231/281 (34.71) +0.29

Working with 'nice' cotangents has the major inconvenience of not having an exact integer
length for the hypotenuse. Although they were capable of working out square roots, it was 
probably burdensome for an actual builder. If you only wanted a rough bearing, it would 
not be a major problem, but if you also wanted to lay out a rectangular building, you need 
to be sure your triangle contained an exact right-angle. 

Temple Layouts at Karnak and the Mesopotamian Tablet Plimpton 322.

We have noted above that meridian lines ran diagonally across both the Festival Hall of 
Thutmose III and the Hypostyle Hall at Karnak. The triangulations implicit in such an 
arrangement are shown in Figure 21. It contains three different sizes of similar right-
angled triangles. For reasons which will become obvious the sides of such triangles are 
described as b for the short side, l for the long side and d for the hypotenuse: the same 
notation as used by Neugebauer in respect of the Plimpton tablet.211 Here the two middle-
sized triangles are assumed to have sides with lengths b, l and d, with those for the smaller
pair being reduced in the ratio b/l and the largest increased by d/l. This means that the ratio
of the areas of the three different sized triangles are b2/l2, 1 and d2/l2 This latter ratio 
appears in the first extant column of the Plimpton tablet. Crucially it is also the ratio of the
length (d2/l)  of the diagonal of the largest triangle to the long sides of the mid-sized 
triangles (l).

209This absolute angle (26.75°) appears at Abydos c.-1550 as 26.75°, corresponding to a declination of 
52.75°  and at Karnak as 116.75° c.-1480, where it approximates to the rising of the mid-winter sun.
210The data is from Shaltout et al and Belmonte et al (see footnotes  180 & 192)
211Neugebauer O., The Exact Sciences in Antiquity, Dover, 1969, p 36.



How could such a layout be set out? Firstly choose the desired row with its corresponding 
small angle. In figure 21, for simplicity, the ratio of the sides and diagonal of the desired 
rectangular building are 3/4/5, as in the Plimpton tablet row 11, with the sides inclined 
36.87° to a desired direction (for the two temples at Karnak it was the meridian).  
Secondly peg out a line (PS) in that direction and with the desired length, say 125 cubits, 
for the diagonal of the finished temple. This length would correspond to d2/l in the units of
row eleven, where the first extant column has d2/l2 as 25/16, which divided into 125 gives 
80 cubits for l. This fixes points Q and R. Knowing the ratio of the three sides, b would be 
60 cubits and d 100 cubits. Thirdly with all three sides of a triangle of the correct size, it 
would be a simple matter to determine the other two corners of the building. This strongly 
suggests that Plimpton 322 would have been useful to a surveyor wanting to set out 
buildings in this manner. That tablet is dated to the Old Babylonian period, which roughly 
corresponds to the 11/12th dynasties in Egypt and from Table 36 we can see a growing 
interest in Pythagorean triangles from Dynasty 11 onwards. Satisfaction with this 
conclusion must be tempered by our not knowing, for certain, what was in the missing part
of Plimpton 322, but ideally it would have included the long side, corresponding to the 
short side and hypotenuse of the second and third extant columns, so that the surveyor 
would know the ratio of the units in the Plimpton row to his chosen cubit length of the 
diagonal. He could then apply that ratio to the units in the second and third extant columns
to get their lengths in cubits and so determine the other two corners.

Mesopotamia - Minas, equilateral triangles and the ‘pole’ on the ground, including 
drawing a circle of desired circumference without knowing either the radius or Pi.

The term ‘minas’ commonly applies to weights and in his analysis of balance pan weights 
at Nippur Hafford recorded seven of one ‘mina’ with a mass between 481 and 500 and a 
mean of 496 gms.212

However in Mul-Apin (c.-1000) the ideal year had 360 days with a ‘mina’ corresponding 
to one sixth of a day, or 60° (time), and the longest and shortest days being 4 and 2 minas 
(ratio 2:1)213 The same mina sub-divisions of the day can be seen in BM 17175 + 17284 
from the Old Babylonian period (c.-1900). 

In reality, on a latitude of c.35°, the longest and shortest days are, measured in time, 216° 
and 144° (ratio 3:2, recognised in Mesopotamia by -c.700) but if measured in azimuth 
they are 240° and 120° (ratio 2:1).214 From time immemorial they would have seen that the
rising and setting of the sun at the two solstices, combined with the meridian, divided the 
horizon into six equal equilateral triangles, which together would form a hexagon. It is not
therefore too surprising that O’Connor and Robertson refer to a theory that ‘an equilateral 
triangle was considered the fundamental building block by the Sumerians’.215

212Hafford, W. B., Mesopotamian Mensuration Balance Pan Weights from Nippur, JESHO 48,3, Brill, 2005.
213Hunger H. and Pingree D., MUL.APIN An Astronomical Compendium in Cunieform, Archiv fur 
Orientforschung, Beiheft 24, 1989.
214For both these two ratios to be precisely correct the latitude of the observer must have been 34.25°,   
calculated from sin ɸ = tan 60 /tan 72, but in practice a latitude within 2° or 3° of this value may well have   
been acceptable. For a latitude of 30° the sine is ½, which could hardly be more simple and, in Egypt, 
Heliopolis and the Great pyramid are on latitudes of 30.11° and 29.98° so it is not surprising that in Egypt 
they seem to have adopted horizontal dialling at an early date. In northern Mesopotamia the sine of 34.85° is
4/7, not quite such a simple ratio and unattractive in a sexagesimal system.
215O’Connor J.J. & E.F. Robertson, Babylonian Numerals, University of St. Andrews, 2000



Neugebauer (1975) referred to ‘the assumption that the given weights represent the 
outflow of water from the bottom of a cylindrical container the ratio 4:2 ratio is not in 
flagrant contradiction to the Babylonian standard M:m = 3:2…’, although mul-Apin does 
not mention water or clocks.216 It seems inherently unlikely they would not have 
considered the two ratios contradictory after they had determined the more accurate 3:2 
ratio. However before then they might well have thought that a water-clock gave a ratio 
which was close enough to the long-established 2:1 ratio in azimuth, This would have 
provided a justification for associating time with a weight of water even after they were 
using dialling and not water-clocks. To-day we happily use horse-power long after horses 
have ceased to be a main source of power.

In AO6478 (c. -700) Hunger & Pingree record 60 2/3 minas for a year of 364 days, but 
state categorically that ‘The weights (of water)  regulate a water-clock in which 1 mina of 
water measures 0;1 days in contrast to the older tradition which used a water-clock in 
which 1 mina measured 0;10 days’, a ten-fold difference.217 Neugebauer’s assumption had 
become an accepted fact. Modern studies of water-clocks were discussed above (p.45) and
it would be helpful if we could find another explanation for the use of ‘minas’  which is 
less dependent on water-clocks.

We have noted the traditional ratio of 2:1 for the longest and shortest days of the year, 
measured in azimuth, but at a distant horizon azimuth angles cannot be distinguished from
the hour-line angles around the ‘pole’ on the ground. At Hierakonpolis in Egypt there was 
a possible early interest in this ‘pole’ around -3000, which was later clearly manifest in the
layout of the pyramids, particularly that of Userkaf (c.-2500) (see p.17ff). In the beginning
it would have been noted that the ‘shadows’ of rows of stars rotated about the pole on the 
ground, but only later would they have managed to distinguish different equinoctial times 
between such rows. In Mesopotamia there is little early evidence of an interest in the 
‘pole’ on the ground, but the GU text (c.-700) had probably 30 strings of stars with similar
R.A. whose ‘shadows’ would rotate about that ‘pole’.218 Even if we assume that the 
Astrolabe Texts were an earlier manifestation of an interest in the ‘pole’, that only takes us
back to the end of the second millennium B.C. With little, except possibly at Assur (see 
below), apparent interest in the ‘pole’ on the ground, the reign of the ‘water-clock’ may 
have lasted longer in Mesopotamia than in Egypt, thus leading to a close association of 
weights of water with the 2:1 ratio in azimuth, with each mina corresponding closely 
enough to 60° of azimuth.  When dialling around the ‘pole’ was adopted the same term 
was retained for 60° of hour- angle.

We have already shown (p.3) that the observers of the proximity of planets to the Normal 
stars moved along a ‘stepped’ curve where each north/south cubit corresponded to 2.5° 
(azimuth). At that time a mention of cubits in a celestial context might have automatically 
implied the use of that curve. Similarly a mention of ‘minas’ might have implied the use 
of 60° angles around the ‘pole’ on the ground. In other words the terms ‘cubit’ and ‘mina’ 
may have defined the type of instrument being used. The tenfold change in the mina, 
noted by Hunger and Pingree can be readily visualised if we assume that it was due to an 
increase in the size of the measuring instrument, rather than a change in the unit of 
measurement.

216Neugebauer, O. A History of Ancient Mathematical Astronomy, Springer, 1975, p 708..
217Hunger H. and Pingree D., Astral Sciences in Mesopotamia, Brill, Leiden, 1999, p.85
218Hunger H. and Pingree D.,(1999) op. cit., p.90.



Figure 22 shows a small hexagon, centred on a gnomon, with sides of one unit, 
appropriate for a day of six minas, as in Mul-Apin. And also two others, ten and sixty 
times larger, centred on the ‘pole’. Equilateral triangles have an interesting property: After
dividing a side of the largest hexagon into ten equal parts, a circle through the ends of the 
first sub-divisions nearest an apex has a circumference of 359.6 units. Without knowing 
either Pi or the radius, it is possible to construct a circle of any desired circumference with 
a precision of just over 1 per mil.219 

From Mul-Apin, at the beginning of the first millennium BC, we know of their interest in 
zigpu stars, which transit at the zenith and ideally have a declination equalling the 
geographic latitude of the observer.220 On a latitude c. 34.75° such stars rise 118.8°(time) 
before transit on an azimuth of 46.1°. For these values to be precisely 120° and 45°, the 
observer must have been closer to a latitude of 35.26°, which is 1° greater than that 
calculated for the 2:1 and 3:2 ratios for the longest/shortest days. The average of the two 
calculated latitudes is 34.75°, which is comparable to those of Mari, 34.54° and Assur 
35.45°. At that average latitude the ‘shadow’ of a zigpu star crosses the main 30° hour-line
divisions of 120°, 90°, and 60°, at altitudes of 6.5°, 19.0° and 32.4° with respectively 
c.108°, 90°, and c.72° of time to transit . The cardinal positions of the sun at the horizon 
would lead to a subdivision of 18° in time or subdivisions thereof, but their interest in 
zigpu stars either led to or coincided with the adoption of the us, a time-degree, with 30 
such degrees in a beru. Seemingly in northern Mesopotamia, observations of the sun’s 
movements, on their own, did not lead to the adoption of nice equinoctial sub-divisions of 
time, which the Egyptians were using by the time of the pyramids, a millennium and a half
earlier (see p. 28ff).

At Assur two sides of the Temple of Anu and Adad are oriented c. 44°/224°from magnetic
north, so would align with a zigpu star, on the horizon, and the Temple of Ishtar has two 
sides c. 59°/239°, close to the rising and setting of the sun in mid-summer and mid-winter 
respectively.221  Like other plans of these temples only magnetic north is shown, but at the 
time of the original archaeological work there in 1910/13 the magnetic declination was 
about 2° east, so the difference between magnetic and true north was small.222 With this 
caveat it seems that the building of these two temples  confirms their interest in horizon 
phenomena, and it would be a relatively short step to use the rotation of the ‘shadows’ of 
celestial objects around the ‘pole’, to estimate the passage of time, even if they did not 
have the advantage given to Egyptians on the 30th parallel, where sine 30° equals ½.223

219Construct an equilateral triangle with sides one-sixth of the desired circumference and subdivide one side  
into 10 equal lengths. Draw a circle through the inner ends of the two outside subdivisions, nearest an    
apex, and centred on the opposite apex. For a circumference of 360° its radius would be 57.236 units, 
which divided into 180 gives 3.145 for Pi. This observation is consistent with Robson’s conclusion that ‘ 
circle was the shape contained within an equidistant circumference’ Robson E., Words and Pictures: New    
Light on Plimpton 322, The American Mathematically Monthly, 2002, Vol. 109, pp105/120.
220Hunger and Pingree (1989) op.cit, p. 143. Table V lists 13 zigpu stars, which were identified as stars with 
a declination ranging from 31.71° to 44.28° and a mean of 36°, which gives an indication of their  
tolerance  for less than precise values.
221The alignments were measured on Figure 46 in Lloyd S. and Muller H.W., Ancient Architecture, Faber & 
Faber, 1986, p.30.
222The magnetic declination was calculated using NASA’s  Magntic Field Calculator Model IGRF
223On latitude 30° the ratio of the tangents of the time to transit and the hour-line angle to the meridian is the 
simple 2:1.



Rogem Hiri 

There is a dearth of material, suitable for analysis, at this site making it difficult to date. 
What follows includes an attempt to date its radial lines, using techniques recorded 
elsewhere in this appendix, such as the preference for angles with nice tangents. 

The monument lies between the River Jordan and the Golan Heights almost due east of the
northern end of the Sea of Galilee.224 The area immediately around the site has a fall, from 
east to west, of 10m over about 520m.225 A cross-section (Figure 24) shows the site itself 
as close to level from the centre eastwards, but with a significant drop to the west..An 
observer standing at the base of the tumulus would see the western outer dry stone wall as 
well below the horizon, whereas in the east it was perhaps only marginally below, say less 
than 1°.

The present tumulus resulted from the collapse of a stepped cone, with an original height 
of over 4m, which was ‘built on a naturally elevated basalt formation’.226 Under the 
tumulus there is a later burial chamber and under that an unworked basalt slab ‘oriented 
north-east/south-west, as the direction of the dromos’ so from the lowest levels we have 
evidence of the importance of this axis.227 We can imagine the first ‘surveyor’ standing on 
the slab and instructing his workers to place rocks on strategic alignments. At that stage 
the site, although much smaller, would have resembled Nabta Playa in Upper Egypt.228 The
tomb axis is given as 58.12°, very close to 57.99° a ‘nice’ angle because its tangent is 8/5. 
In the opposite direction it would be 238.12°, corresponding to the setting of Sirius c. -
4000.229

There are three outer concentric walls, labelled 2, 3 and 4 in figure 24, although others 
have numbered them 3, 2 and 1.230 Number 2 is relatively modest with a thickness between
1.8 and 2.0m and a preserved height of about 1m. Its perimeter has a bulge on the south-
west and a kink on the south-east. Walls 2 and 3 appear to have been laid out around the 
same point some 3.2m south of the centre of the tumulus.231 Wall 4 is the most impressive 
with a thickness of 3.2/3.3m and a current height of c.2.5m. Its centre was about 4.25m 
south of the burial chamber and later we will suggest a justification for this shift.232

224 Google Earth: Lat. 32.81°, Long. 35.80 Est, Altitude 516m
225 Zohar M., A Megalithic Monument in the Golan, Hebrew University of Jerusalem, JSTOR 27926134, 
1989, Fig.3 (reproduced here as figure 24)
226 Mizrachi Y., Mystery Circles, Biblical Archaeological review, Vol. 18, no.4, 1992, p.50; his figure on 
p.49 reproduced here as figure 25. See also Mishrachi et al, The 1988-1991 Excavations at Rogem Hiri, 
Golan Heights, Israel Exploration Journal, 46 (3-4) 1996, pp 177/8 .
227 Mizrachi et al, op.cit., p.180 refers to an ‘earlier construction phase…. At the centre of the complex’.
228 Malville J.McK, Schild R., Wendorf F. and Brenmer (sic) R.,Astronomy of Mabta Playa, African Skies 
11, July 2007.
229 SkyMap Lite 2005.
230 Zohar, op.cit. p.23, recorded the main dimensions of the three outer walls and a preliminary inspection 
suggests they were more egg-shaped than circular, with the pointed ends to the south
231Aveni A. and Mizrachi, Y, The Geometry and Astronomy of Rujm el-Hiri, a Megalithic site in the 
southern Lavant, Journal of Field Archaeology, 25(4),1998.
232 The 4.25m is derived from the centre assumed for the calculations in Table 1 of Aveni and Mizrachi. For 
the two equinox marker stones the angular difference for the two centres is 3.5°, which at distance of 69.5m 
equates to 4.25m.



One of the difficulties with the site is a dearth of dateable material. Friekman and Porat 
suggest the Chalcolithic period for its initial development, largely based on the local 
population density but they also found sediment samples, dating to the 4th millennium 
BC. 233 In the second half of that millennium the second brightest star, Canopus (α Car), 
became visible due south. There were also two major conjunctions in declination on -24° 
between Sirius (α CMa), the brightest star, and the sun at the winter solstice (c.-3400) and 
on +24° between Capella (α Aur) and the sun at the summer solstice a little later (c.-3350).
Aveni and Mizrachi noted that the setting of Sirius was directly opposite the north-eastern 
entrance way.234 This indicates that the monument could be used from the centre looking 
outwards and also in the opposite direction. In a theoretical flat landscape celestial objects 
with a declination of ±24° would rise on azimuths of 90°± 29°.

The sun casts shadows of anything in its path but to capture the ‘shadow’ of a star the 
observer would need to keep it aligned with the top of a gnomon. This is awkward because
he ought to have his eye at ground level like the shadows cast by the sun. We have shown 
above that at Hierakonpolis, c-3400, they seem to have used low fences to follow 
‘shadows’ of stars and were beginning to show an interest in the rotation of stars around 
the ‘pole’ on the ground.235

The details of the two entrances in the north-east and south-east are summarised in Table 
37. Ignoring any departure from a flat horizon, the azimuths of the sides of the 
northeastern entry equate to declinations of about 16° and 28°, a range of 12°, suggesting 
it was designed to accommodate the rising of the moon and planets, as well as the sun, 
around the summer solstice.

The basic north-east/south-west orientation had a simple tangent of 8/5, so perhaps other 
recorded angles had similarly nice tangents, as we have noted elsewhere in the region. In 
Table 37, column C, the azimuths for the outer wall opening to the north-east have tangent
ratios of 3:1, 2:1 and 3:2 three of the simplest ratios, which was certainly no coincidence. 
Furthermore the corresponding azimuths for the south-eastern opening are nearly as nice. 
Evidently the layout of both openings was based on azimuths around point 79, above the 
burial chamber, and not around the geometric centre of the walls. 

233 Freikman M. and Porat N., Rujm el-Hiri: The Monument in the Landscape, Hebrew University of 
Jerusalem, Geological Survey of Israel, Tel Aviv, 2017, Vol. 44, pp14-39. For sediment analysis see their 
table 3.  On page 27 they admit the possibility that construction may predate -4000.
234Aveni and Mizrachi op.cit. p.489.
235 Bremner R.W., Babylon Linear Measures of Celestial Angles and an Observatory, 2023, web site British 
Astronomical Association pp 17/27.



Table 37 Data from Aveni and Mizrachi, Table 1. N.B The outer values for wall 1 in the north-east appear to
have been interchanged and in the south-east the values for the centre and southern side may have been 
similarly switched. Walls referred to as 1 and 2 by Aveni and Mizrachi are labelled 3 and 4 by Zohar in 
figure 24.

Azimuth measurements around point 79, above
tomb

Calculated values around geometric centre

Azimut
h

Tangent Tangent
fraction

Corresp
o-nding
azimuth

Diff.
A less

D

Bearing
angle

Tangent Tangent
fraction

Corresp
o-nding
bearing

Diff.
F less I

Calc.
 rising

to
transit  

Tangent
time

NE
entry

A B C D E F G H I J K

degrees ratio ratio degrees degrees degrees ratio ratio degrees degrees degrees

Wall 2
N

55.95 1.48 3/2 56.31 -0.36 53.83 1.37 7/5 54.46 -0.63 68.37 2.52

Wall 2
C

58.00 1.60 8/5 57.99 0.01 55.88 1.48 3/2 56.31 -0.43 69.85 2.73

Wall 2
S

59.97 1.73 7/4 60.26 -0.29 57.95 1.60 8/5 57.99 -0.04 71.25 2.94

Wall 1
N

70.83 2.88 3/1 71.57 -0.74 68.43 2.53 5/2 68.2 0.23 77.88 4.66

Wall1 C 63.23 1.98 2/1 63.43 -0.20 60.83 1.79 9/5 60.95 -0.12 73.12 3.30

Wall 1
S

55.65 1.46 3/2 56.31 -0.66 53.25 1.34 4/3 53.12 0.13 67.93 2.47

SE
Entry

Wall 1
N

140.73 -0.82 5/6 140.19 0.54 139.28 -0.86 5/6 140.2 -0.92 122.28 1.58

Wall 1
C

161.10 -0.34 1/3 161.58 -0.48 160.18 -0.36 1/3 161.57 -1.39 146.47 0.66

Wall 1
S

152.78 -0.51 1/2 153.43 -0.65 151.85 -0.54 1/2 153.43 -1.58 135.17 0.99

Equinox  stones

86.78 83.28

94.35 90.85

In -3000 a Cmi (R.A.49°) and a Sco (R.A. 179°) rose on azimuths of 86.13° and 94.37°, 
closely matching the positions of the ‘equinox’ stones, which suggests that by -3000 this 
bearing had been recognised, but we cannot take this as dating the building of the wall for 
the large marker stones could have been placed on the ground at that time and later raised 
to sit on top of the wall.

It is not clear what north is indicated on plans of the site. For instance Aveni and 
Mizrachi’s figure 2 merely says north is to the top, but does not state if it is magnetic or 
true north. In Figure 25 we have made an anti-clockwise adjustment of 5.91° to the 
indicated north. This value is not too far from the present magnetic declination in Israel, 
but is double what it must have been around 1990, unless there is some local anomaly 
around Rogem Hiri.236 This adjustment in figure 25 brings the azimuths on the plan into 
line with the azimuth measurement for the southern side of the north-east opening in Table
37 and it also seems consistent with the equinox marker stones being due east of the 
‘pole’237. The layout of the two entry points can be visualised as being on a 12 x 12 grid, 
with each grid square having sides of 11.7m (figure 25)

236For historic magnetic declination see Survey of Israel, Shirman B., 40 years of magnetic observatories and
100 years of magnetic declination measurement in Israel, 2016.
237Measurements on a Google Earth Map suggests 5.91° may be too high and 3.31° would be closer. 



Central Structure.

If, as suggested, the outer wall in the east was intended to be just (say 0.5°) below the 
horizon we can estimate that the gnomon at the centre must have been c.0.65m above the 
level of the wall, with its height above ground level depending on the height of that wall. 
Aveni & Mizrachi indicate that the present height of the outer wall is ‘more than over 2m’ 
in places, but in the later paper it is given as up to 2.5m.238Also unless the large equinox 
marker stones were only the base of an even higher structure the intended height cannot be
much above what now remains, suggesting a height at the centre in the region of 2.65 and 
3.15m. 

Assuming there was a small gnomon at the centre, Table 38 sums up significant points, 
where the sun’s shadow would cross the meridian, together with the position of the 
celestial pole on the ground.

Table 38 Sun’s shadows on the meridian for Latitude 32.9° with the obliquity of the 
ecliptic 24°

Altitude Positions on meridian 

Gnomon Height
metres

1 2.75 (b) 4.0 (c)

degrees metres metres metres

Winter solstice 33.1 1.534 N (a) 4.2 6.1

Equinox 57.1 0.647 N 1.8 2.6

Summer solstice 81.1 0.157 N 0.4 0.6

Gnomon 0 0 0

Pole on ground 32.9 1.546 S (a) 4.25 6.2
Notes a. Around -5700 Obliquity of ecliptic 24.2° and both mid-winter shadow and the ‘pole’ would be 

1.55 units north and south of a gnomon with unit height.
b. 2.75m is calculated from the distance of the geometric centre from the gnomon.
c. Height of stepped cone

Aveni and Mizrachi showed the centre of the three outer circular walls some metres south 
of the burial chamber, with the centres of inner walls further north under the tumulus.239 
There is a possible justification for this shift. A central cairn, 2.75m in height, would be 
just a little above the height of the outer wall and would have the ‘pole’ 4.25m to the south
and the winter sun would cross the meridian 4.20m north. Around -3400 at Hierakonpolis 
in Egypt they were showing an interest in lines rotating about the ‘pole’. Here a gnomon 
of 2.75m must have pre-dated the stepped cone of 4m. On the other hand the centres for 
walls 2 and 3 were c.3.2m from the burial chamber or some 25% closer than the centre of 
the outer wall. If these walls too were centred on a ‘pole’, the height of the gnomon must 
then have been closer to c.2.0m.

It seems reasonable to believe that the later building of the 4m stepped cone coincided 
with the building of the square structures within the entrances. As the latter were said to be
higher than the nearby walls, we might assume the tops of the square structures were

238 Aveni and Mizrachi op.cit. p.477
239Aveni and Mizrachi op.cit., p.479, figure 3.



much the same as that of the 4m cone, so that there would have been horizontal lines of 
sight between the three positions.240

Radial Walls

Eight walls between the second and third largest concentric walls were labelled A to H by 
Zohar.241 Although generally described as radial, D, E & F are definitely not, but they do 
draw attention to three significant stars in the south. In -3500 Canopus, α Car, would have 
set and β Carina and β Centaurus would have risen within just seven minutes. By -3200 
Canopus would spend two hours above the horizon. Watching the nightly movements in 
the far south would have stimulated an interest in time with one star, for example, crossing
from rising to setting while another only reached the meridian. By -2600 α Car and β Car 
would take 1.5 and 2.0 hours respectively from the horizon to the meridian. Over this near 
millennium interest in these stars could have shifted from their simultaneous positions on 
the horizon to their time to transit, but we do not know when this shift occurred, so in 
figure 25 we have shown the calculated positions of specific hour-lines, defined by the 
simple tangent ratios in column f of table 39. The radial lines with nice tangents are close 
to the radial wall alignments, which mark the passage of time in units of 15° or simple 
subdivisions thereof, but there are anomalies. For wall F, which is probably associated 
with Canopus, the line is far from radial, with the inner end aligned with the meridian and 
the outer end with the one hour hour-line. From this we can conclude that those walls 
which are obviously not radial were probably intended to measure different times at either 
end, with the inner end being earlier, when the appearance of Canopus had only recently 
been recognised.

Table 39 Calculation of the hour-line angles, which are symmetrical north and south of due east, as in a 
horizontal sundial, with selected matching stars.

Hours to
meridian

Decl.
+ or -

Azimuth Hr-line  to
meridian

Tangent
hour-line

Suggested
fraction

Possible star
& apparent
brightness

Rising to transit time Radial
Line

-3000 -2500

a b c d e f g h i j

degrees degrees degrees ratio ratio hours hours

1 -56.19 171.7 8.28 .145 1:6

1.5 -55.00 167.32 12.68 .225 2:9 α Car -0.72 1.21 1.55 F

2 -53.24 162.6 17.41 0.314 1:3 β Car 1.68 2.26 1.98

3 -47.54 151.5 28.51 0.543 1:2 α Tri 3.41 3.36 3.02 E

3.5 -43.26 144.7 35.29 0.708 7:10 α Lyr 0.03 8.64 8.49 H

4 -37.7 136.7 43.25 0.941 1:1 α Cyg  1.25
α Cen 5.15

7.93
4.25

7.93
4.05

A
D

5 -21.81 116.3 63.74 2.027 2:1 α CMa -1.46
β Gem 1.14

5.00
7.08

5.08
7.18

G
B

5.5 -11.41 103.6 76.38 4.127 4:1 γ Ori 1.64 5.54 5.66 (a) C

6 0 90 90

Note a. We have assumed γ Ori was associated with a time of 5.5 hours, but perhaps it should have been 
5.67.hours
Further north walls A, B, G and H are close to the respective hour-lines, while C shows a 
modest shift in radial angle between the inner and outer ends, suggesting that the intended 

240Zohar, op.cit p.24
241Zohar, op.cit,, his figure 3 shown here as figure 24.



times were not identical. Their knowledge of hour-lines did not come from a learned study
of the theory of sundials but from observation of specific stars and Table 39 includes 
suggestions of which they might have been and the nine stars include four of the five 
brightest. For the radial walls as a group their date can be considered as one or two 
decades before -2500, when all the stars were within 5 minutes of the respective target 
time, with one exception β Gem (11minutes, wall B)242 They were early adopters of a 15° 
hour.

It would seem the radial walls were designed to lie in the narrow gaps between lines of 
azimuth, around a gnomon, on the north side and hour-lines, around the ‘pole’, on the 
south.243 An accurate survey would reveal if the alignments had ‘nice’ tangents or were 
actually determined by direct observation of objects on the horizon

242Wall C is associated with a time of 5.5 hrs, but making a small adjustment to 5.67 hrs would agree with a 
date of -2500.
243The two lines of azimuth and hour-line meet at infinity or a distant horizon.



Table 40.Proposed Time line – Rogem Hiri

Approx.
date

Event Gnomon
Ht

Landscape
features

Mt Hebron azimuth 359°, altitude 2.8°
Tel Fares azimuth 47.3 °, altitude  2.7°, decl. 36.5°
Mt. Tabor azimuth c.236 °, altitude ? decl. c.-28°

n/a

-5700 Obliquity of the ecliptic 24.2°
Shadow of mid-winter sun and the ‘pole’ would be 1.55 units 

north and south respectively of a gnomon of unit height

-4360 Sirius sets by Mt Tabor

-4000 Sirius sets on 238.3°opposite 58.3° on main site axis

-3500
(a)

Sirius, α CMa, sets opposite centre of NE entryway
Canopus, α Car, just visible due south

-3400 Sirius on same path as sun at Winter solstice

-3350 α Aur on same path of sun at Summer solstice
Sirius and a Aur rise & set opposite each other

-3200 Canopus above horizon for two hours

-3000 Sirius 5 hours from horizon to transit

-2600 Canopus above horizon for three hours

Pre -2500 Construction of 3rd largest circular wall

Just before 
-2500

9 Selected stars, except β Gem, within 5 minutes of specified
time,

construction of radial walls between 2nd and 3rd largest circular
walls and construction of 2nd largest circular wall

Post -2500 Construction of largest circle with height just below top of
gnomon

c.2.75m

later Construction of square structures within entrances,
construction of stepped cone at centre

4m

1400 Sirius now too high in the sky to set opposite the NE entrance in
outer wall



Summary Timeline

Egypt in red

Year Location Pythagorean
Triangles etc

Subdivisions
of circle

Time

-5500 Tell es-Sawwan 45°
-5100 Eridu 30°
-4700 Nabta Playa 3,4,5
-4500 Egypt Year 360 +5 days
-4450 Nabta Playa 26.56°
-4250 Eridu 3,4,5
-3900 Abydos 5 pointed star 72° divisions
-3400 Hierakonpolis 3,4,5  5,12,13

9,40,41
Discovery of 'Pole' on

ground
-3100 Mesopotamia 8 pointed star
-3000 Egypt spirals
-2600 Saqqara 4 later 6 different Horizontal Dials
-2556 Khafre’s pyramid Giza Built-in hours 60 minutes
-2500 Rogem Hiri Nice tangents Hour-lines
-2500 Menkaure’s Causeway? Three season year
-2500 Standard Pyramids 3,4,5 Standard hour 60 minutes

& short hour 40 minutes
-2300 Coffin Lids 

Many ex Asyut
Short hour 40 minutes

-2000 Armant Vertical Dial

-1900 Mesopotamia
Old Babylonian Period

26 different - Ark &
Plimpton tablets

 Circle drawn
without
knowing

radius or Pi

daylight 2:1 & 3:2 ratios  &
interest in zigpu stars & 30°
division (beru & us) of time

-1800 Thebes Horus Eye
fractions

-1500 Egypt L-shaped sundials
-1300 Upper Egypt

Abydos
Rt. triangles side 60 

Djed Pillar E/W Sundial
-1000 Mesopotamia Mul-Apin Shadow length table
-700 Babylon azimuth in

2.5° steps
Longitude near horizon

-400? Babylon Ready Reckoner for
converting rising azimuth to

rising time
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