

Report on logging SID data from an UKRAA

VLF receiver using an AB electronics UK ADC

Pi and a Raspberry Pi 4 Model B 2GB

connected to UKRAA VLF aerial, VLF aerial

tuning unit and VLF receiver

Richard Knott

January 2022

Contents
Background ... 3

Getting the aerial data .. 5

Getting Goes 16 X-ray flux data .. 7

Getting Sunrise and Sunset data ... 9

Plotting the data ... 10

Appendix 1: File structure on Raspberry Pi ... Error! Bookmark not defined.

Appendix 2: GetDataSun.py code ... Error! Bookmark not defined.

Appendix 3 : GetDataXray.py code ... Error! Bookmark not defined.

Appendix 4 : GetDataAerial.py code ... Error! Bookmark not defined.

Appendix 5 : PlotDataYesterday.gp code .. Error! Bookmark not defined.

Appendix 6 : RestartGetAerialData.py code.. Error! Bookmark not defined.

Appendix 7 : notes from my VLF project book .. Error! Bookmark not defined.

Background

I usually observe the sun in white light (with Baader Herschel wedge)

Or H-aplha (either with Quark or modified PST)

With the fickle UK weather (cloudy) I wanted to explore another wavelength of the EM spectrum.

Clearly I could take the next “visible” wavelength of Calcium-K, but that was outside of my price

range at the time. However reviewing some of my solar astronomy books (BAA Observing Guide to

the Sun) I was aware of the potential of radio astronomy. I had always considered this to be out of

my scope but the VLF monitoring for solar flares looked interesting. I also stumbled upon the

Flamsteed Astronomy Society write up of their VLF receiver – they had highlighted that they were

using a raspberry pi with attached ADC to record the VLF data. I was intrigued and thought that this

was within my capabilitiesand made contact asking if they would share their python code – I

received a reply that they were rewritting their code at that time and changing their set-up – so I

thought I would give it a go myself.

I sourced the VLF aerial and receiver in kit form from UKRAA – together with prebuilt VLF ATU and

VLF signal generator and proceded to buid the kit. Once finished I was thrilled at getting a reading

on my voltmeter but recognised that I could not sit there all day and look at the changing number –

no matter how exciting the changing values appeared appeard to be.

Reviewing the VLF receiver manual issue 1.3 November 2015 (the one available when I build my

recevice kit) – UKRAA highlighted the use of a data logger (PicoLog) connected to a PC, or Radio Sky

Pipe using additional Maxim MAX 186 (my board did not have this option) connected to a PC, or

UKRAA Starbase application with contoller (no longer available?) connected to a PC – also available

on the UKRAA website at the time was the LabJack U3-HV for connecting to Radio Sky Pipe and a PC.

I am a bit of a skin flint and did not want to spend a lot on converting analogue signal to a digital

system or have a full desktop PC running all the time. Having experience with raspberry pi’s from

previous projects that I have running 24/7 I was keen to explore the possibility of using a pi to

gather, process and display the information from the VLF receiver.

I use Pi Hut (https://thepihut.com/) when purchasing Raspberry Pi equipment – so a quick search on

their website indicated a wealth of possibilites that could plug directly into the GPIO header on the

pi.

Knowing that the VLF receiver has two potential outputs P10 0-2.5V and P7 0-5V, I

was able to narrow my search down to any pi HAT ADC that could accept 0-5V (the bigger the

potential difference the better) rather than the 0-2.5V (could not find an ADC for this potential

difference range).

Reviewing the option available through Pi Hut I selected the AB Electronics ADC Pi as its input range

was 0-5.06V rather than ADC Differential Pi that had an input of +/- 2.048V.

AB Electronics web site for the ADC Pi (https://www.abelectronics.co.uk/p/69/adc-pi-raspberry-pi-

analogue-to-digital-converter)also had a wealth of information about the board and links to their

code libraries available through GitHub (https://github.com/abelectronicsuk/).

https://thepihut.com/
https://www.abelectronics.co.uk/p/69/adc-pi-raspberry-pi-analogue-to-digital-converter
https://www.abelectronics.co.uk/p/69/adc-pi-raspberry-pi-analogue-to-digital-converter
https://github.com/abelectronicsuk/

Getting the aerial data

I connected P7 (0-5V analogue output) to a 3 pin GX12 socket that I had on the front

panel of the enclosure (Hammond 1455N1601) I used for my VLF Receiver (gave me the option of

taking 2.5V and 5V analogue outputs to front panel should I latter use the 0-2.5V analogue output)

This then connects with the 2 pin header I put into input 1 of the AB Electronics ADC Pi HAT. The AB

Electronics ADC Pi HAT pugs directly into the Raspberry Pi GPIO header.

I followed the instruction from the AB Electronics web site – see appendix 7 : notes from my VLF

project book.

I used the AB Electronics sample code as a basis for the GetDataAerial.py code that I wrote to record

and save the VLF receiver analogue 0-5V output. The python script is run in the background and is

checked by the ResetGetDataAerial.py script every 5 minutes via cron to ensure that it is running (I

want to change this to a service script and this will get away from running the ResetGetDataAerial.py

script every 5 minutes via cron – but it ain’t broke yet…). The code is effectively an infinite loop – so

runs continually in the background.

The python GetDataAerial.py code has features of the other GetDataXxxx.py code GetData – it check

that the folder structure is there – if not it creates it.

The data is stored in a simple text file that can be assessed by gnuplot as data for plotting.

I have not reviewed this code for some time, so it is a mixture of CamelCase and Snake-Case syntax

(bad) – but it works (for me).

A new file is created at the start of each day 00:00am UTC and data is appended each minute.

I record the potential difference from the VLF receiver every minute.

I spent some time ensuring that the potential difference was always taken at the start of each

minute – this was achieved using the “time.sleep(60.0 – ((time.time()) % 60.0))” statement in the

while true section of the code. Why did I do this – so that there would be correlation between

GOES-16 X-ray flux timestamps and that which I recorded from the VLF receiver.

Code used for obtaining the VLF Receiver analogue output is included in Appendix 4.

Getting Goes 16 X-ray flux data

Recording data from the UKRAA VLF receiver is great with the AB Electronics Pi ADC Hat.

But one wants to compare this to actual X-ray flux data from our Sun to see if there is correlation

between SID events recorded via the UKRAA VLF receiver and those recorded elsewhere.

Real time X-ray flux data is presented for the GOES 16 satellite through the Space Weather

Prediction Centre (swpc) web site (URL: https://www.swpc.noaa.gov/products/goes-x-ray-flux)

Historic numerical data is available through the swpc web portal (URL:

https://services.swpc.noaa.gov/json/goes/)

It is the primary data that I was interested in – this is from GOES-16 (secondary data is from GOES-

17).

https://www.swpc.noaa.gov/products/goes-x-ray-flux
https://services.swpc.noaa.gov/json/goes/

Reviewing the primary data – identified “xrays-3-day.json” as data required.

Data can be accessed via a GET request from the Raspberry Pi.

Data is transferred to json dictionary and then processed to obtain short (0.05 to 0.4nm) x-ray flux

and long (0.0 to 0.8nm) x-ray flux values at 60 second intervals from 00:00am to 24:00pm for

yesterday and then stored in a text file in the x-ray data folder.

Code used for obtaining the GOES-16 x-ray flux data is included in Appendix 3.

Getting Sunrise and Sunset data

Since no solar flares are detectable by the VLF receiver at night-time, it seems sensible to identify

two datum points for inclusion on the VLF plot – sunrise and sunset.

There are several web based sites that offer this information on a daily basis – however as this was

to be an autonomous system then a scrapped solution was sort.

Googling solutions identified a simple API solution that could be accessed via a GET request to

https://api.sunrise-sunset.org/json.

URL: https://sunrise-sunset.org/api

The web page has sample code and instruction for obtaining the required data.

Note : all times are UTC with no adjustment for summer light saving – this is good as data from GOES

16 X-ray flux is in UTC.

Code used for obtaining the sunrise and sunset times each day is included in Appendix 2.

https://api.sunrise-sunset.org/json

Plotting the data

All well and good to have the aerial data and corresponding GOES 16 X-ray flux data in .txt format.

However the data needs to be visualised to appreciate if there has been a SID event. Consideration

of plotting programs was considered for the Raspberry Pi and gnuplot was selected as a suitable

application.

Concept to have two plots on one graph:

Plot 1 : Y1 axis and X axis – where Y1 axis is linear scale of potential difference from the AB

Electronics Pi ADC hat on top of the GPIO raspberry Pi header (VLF signal strength from 0-5V output

of VLF receiver) range 0v to 5V and X axis is time based starting at 00:00 hours to 24:00 hours the

previous day from stored aerial data folder for that date.

Plot 2 : Y2 axis and X axis – where Y2 axis is base 10 logarithmic scale of GOES 16 X-ray flux for long

X-rays (0.1nm to 0.8nm) and X axis is time based starting at 00:00 hours to 24:00 hours the previous

day from stored x-ray data folder for that date

Additional information to be added to graph:

Label 1 : down time of Ramsloh transmitter – 07:00am to 08:00am UTC each day

Label 2 : Sunrise time – vertical line on x-axis to identify when SID event detectable by VLF receiver.

Label 3 : Sunset time – vertical line on x-axis to identify when SID event detectable by VLF receiver.

Grey area 1 : from 00:00 to sunrise – to emphasise no SID detectable before sunrise

Grey area 2 : from sunset to 24:00 - to emphasise no SID detectable after sunset

Example plot:

Code used for plotting yesterday’s VLF and GOES 16 X-ray flux is included in Appendix 5.

