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1.0 Planck Distribution 
Plank’s distribution law for the energy flux of radiation emitted from a black body at temperature T 

per unit area per unit time, as a function of frequency, is:- 

        
   

  

  

    
  

  
   

        (1.1) 

If we integrate (contour integration) this over all frequencies we get the total radiated energy flux U 

(units W m-2) i.e. 

   
   

   
  

    
  

  
   

 

 
   

 

  

    

               (1.2) 

The last step in (1.2) produces the Stefan-Boltzmann law where   is the Stefan-Boltzmann constant 

(= 5.67x10-8 W m-2 K-4). Note that the total energy density  

   
   

   
  

    
  

  
   

 

 
   

 

  

    

     
   

 

 
        (1.2a) 

 Now, given that frequency and wavelength are related by   
 

 
 which implies:- 

      
 

             (1.3) 

we can write:- 

   
   

 
 

  

       
  

   
    

 

 
   

 

  

    

           (1.4)  

   
   

   
  

       
  

   
    

 

 
   

 

  

    

     
   

 

 
       (1.4a) 

So, Planck’s distribution law for the energy flux of radiation emitted from a black body at 

temperature T per unit area per unit time, as a function of wavelength, is:- 

        
    

  

 

     
  

   
    

       (1.5) 

Note that the functions        and        are different and when plotting the distribution against 

wavelength rather than frequency we are giving the x axis a non-linear stretch (defined by equation 

(1.3)), therefore the peak frequency in        and peak wavelength in        are, somewhat 

counter intuitively, not related by   
 

 
. 

In prism/grating spectroscopy we are measuring        (presumably a photoelectric effect 

experiment could directly measure       ) so we must use equation (1.5) to generate a black body 

curve. 

We can look for the peak positions in the two distribution functions (    and   ) by differentiating 

equations (1.1) and (1.5) then setting both differentials to zero. For        we obtain:- 
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          (1.6) 

whilst for        we obtain:- 

 

 

  
    

  

    
 

 

  

    
  

    
   

          (1.7) 

Equation (1.7) can be written as:- 

 
      

   
  

 
 

  

    
   

  
   

          (1.7a)       

with    
 

  
. Now equations (1.6) and (1.7a) are identical except for the number on the right hand 

side and so both cannot be true simultaneously. In an attempt to “square the circle” we could 

compromise and solve:- 

 
      

   
  

 
 

  

    
   

  
   

          (1.8) 

but this is unphysical. It’s better just to accept that    
 

  
 in which case we need to fit the 

distribution given by equation (1.5) to our prism/grating derived data and calculate the peak from 

equation (1.7), note as this is a transcendental equation it needs to be iterated. Dropping the p 

subscript and letting   
  

  
 then we can define the following functions from equation (1.7):- 

      
     

 

 
 

      
 

 
    

           (1.9) 

 
     

  
       

      

 
        

 

 
       (1.10) 

then, to iterate guess a    and repeatedly calculate:- 

         
     

      
        (1.11) 

2.0 Thermal Spectral Line Broadening 
The probability of a fluctuation ΔE from the mean energy in a system in thermal equilibrium at 

absolute temperature T is:- 

           
 

  

          (2.1) 

As    
 

 
     this corresponds to an atomic velocity fluctuation (ΔV) probability of:- 

           
 

    

           (2.2) 
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Which, as     
  

  
 , in turn corresponds to a Doppler shift (Δ) probability of:- 

           
 

      

     
 

        (2.3) 

i.e. a Gaussian distribution:- 

             
 

       

            (2.4) 

with    
  

      and    
 

    
 

FWHM:             
  

 
 i.e.:- 

 
 

 
          

 

             (2.5) 

Therefore 

                              (2.6) 

3.0 Pressure Spectral Line Broadening 
Spectral line widths are affected by pressure, the more frequent atomic collisions are the more a 

given spectral line will be broadened. This is a resonance process and follows a Lorentzian 

distribution (“Atomic Astrophysics and Spectroscopy “ Anil K. Pradhan and Sultana N. Nahar):- 

        
 

 
 

 

 
  

 
  

 
 

         
  

 
 
    

 

 
       (3.1) 

    
 

  
 ,where    is a quantum mechanical “damping” factor which can be assumed negligible 

compared to 
 

  
 which is the average collision frequency, so we have:- 

   
 

  
          (3.2) 

Changing variable to wavelength using   
   

 
 we can deduce:- 

      
 

 
   

 

 
  

 
   

 
 

         
    

 
 
    

 

 
       (3.3) 

where:- 

  
  

 
 

   

 

   
          (3.4) 

And the approximately equal sign   occurs in (3.3) as we have approximated the term     to   
  in 

the change of variable calculation. This results in a symmetric distribution function and introduces 
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negligible errors if, as is the case, the width of a line is small compared with the wavelength. So we 

have:- 

      
 

 
 

  
 

   

          
 

   
          (3.5) 

The half height (wavelength half width) occurs when           

  . 

The book referenced above goes on to deduce:- 

 
 

 
         

          (3.6) 

where N is the number density of atoms,    is an impact parameter (units m) and    is the relative 

mean velocity between impacting particles. For a Maxwellian distribution of velocities we have:- 

      
  

  
 
   

          (3.7)  

 where M is the mass of the identical impacting particles. 

If we simply substitute from (3.6) into (3.4) to obtain an expression for    we find that we have 

introduced a dependence on the absolute value of the emitted wavelength into the wavelength 

distribution. However, when expressed in terms of emitted frequency, there is no dependence of 

the width of the distribution on the particular emitted frequency.  To restore this property to (3.5) 

and to obtain the correct dimensionality, we must express the impact parameter as a function of 

wavelength specifically:- 

    
   

 
 

 

 
           (3.8) 

where   is a constant. Substituting into (3.4) we obtain:- 

 
  

 
 

  

   
        

      
        (3.9) 

To proceed further we can either:- 

1. Investigate the impact parameter    in a detailed theoretical analysis as discussed in the 

book referenced above. 

2. Consider    as a fitting parameter and a constant for all stars. 

Option 1 is a complex undertaking beyond the simple scope of this work. Therefore we shall adopt 

option 2 and compare predictions from our simple theory to the known properties of the sun, see 

section 7 when all the elements of our model are brought together. When applied to other stars, 

errors are to be expected that grow as the star under consideration becomes more dissimilar to the 

Sun.  
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4.0 Rotational Spectral Line Broadening 

4.1 Uniformly Emitting Oblate Spheroid 
Using oblate spheroidal co-ordinates, let a point on the surface of the star have position vector 

(relative to its centre):- 

                                                 (4.1) 

               
 

 
   

 

 
           and the volume integral can be written as:- 

                 

With                      
 

   and               

In this analysis I will assume that the star is rotating about the z axis i.e.      and we are 

observing the star from within the     plane at a angle   relative to the x axis i.e from the direction:- 

                 where     
 

 
     (4.2) 

The  degree of oblateness is determined by the coordinate   together with the constant   . Spherical 

symmetry results if     and     such that                    . Disk symmetry results if 

    in which case        . At intermediate values of   the equatorial radius       and the polar 

radius      are related by:- 

 
  

  
                (4.3) 

The first task is to determine the unit normal      to a elemental spheroidal surface area at position 

 . As the co-ordinate system is orthogonal curvilinear the normal can be calculated from:- 

    
 

  

  

  
 

 

              
 
 

                                           

Therefore, assuming uniform intensity emitted per unit area     , we can determine the total 

received intensity from:- 

                                     (4.4) 

Where 

                                                         (4.5) 

We will now choose to set   
 

     
 as then equation (4.1) becomes:- 

                                       (4.6) 

and we see that, setting    , the equatorial radius      and, setting    
 

 
, the polar radius  

        . 
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We will specify the equatorial surface velocity as a fraction of c, this can be achieved by setting 

  
 

 
  .  

We want to integrate        along contours of constant line of sight velocity, therefore we need to 

calculate the velocity at any point from:- 

        

   

   
                         

      (4.7) 

From which we obtain:- 

                                (4.8) 

Therefore the line of sight velocity is:- 

                        
   

  
   (Doppler shift)    (4.9) 

For a given   and     define the constant   as:- 

             
       

   
 

 
     

        (4.10) 

which implies      , rearranging we have       
 

    
 and therefore:- 

           
 

    
 
 
 

 

 

       (4.11) 

These last equations define the contour along which we wish to evaluate        for a given value of 

  i.e. it relates   and   so we can determine                 to be:- 

                          
 

    
 
 
 

 

 

                 (4.12) 

For a given value of K (i.e. given   ) we can evaluate the following integral to obtain the received 

intensity at a particular   :- 

           
  

  
  

    

    
       (4.13) 

where    is the line element given by:- 

 
  

  
      

 
    

  

  
 
 
 

 

 

        (4.14) 

Differentiating equation 4.10 we have:- 

 
  

  
  

        

        
        (4.15) 

therefore:- 
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      (4.16) 

Substituting from equations (4.11) and (4.15) we obtain:- 

 
  

  
  

            

      
 

      
 

    
 
 

   
 

    
 
  

 

 

      (4.17) 

Therefore we can write:- 

     

                     
 

    
 
 
 

 

 

               
            

      
 

      
 

    
 
 

   
 

    
 
  

 

 

  
    

    
                

           (4.18)                

We now need to determine the limits of integration, the limits are reached when the contour hits 

the visible limb of the star. On the limb we have the condition:- 

                                                                    

which implies:- 

                                       (4.19) 

substituting for   and re-arranging we have:- 

        
   

      

    
 
 

   
     

    
 
         (4.20) 

This needs to be solved for the two limits, define  
 

 
      and 

 

 
    

  

 
 . One limb 

intersection      will be in the northern hemisphere  and the other in the southern. If, as will 

generally be the case    
 

 
 (exception   

 

 
), we will need to split the integral such that 

        where    is integrated between limits    and      whilst    is integrated between limits 

     and    where      is calculated from            with   
 

 
 i.e.:- 

`                        (4.21) 

The special case of a sphere is obtained by letting     in which case equation 4.18 becomes:- 

                     
 

    
 
 
 

 

 

                 
      

 

    
 
 

   
 

    
 
  

 

 

  
    

    
    (4.22) 

4.2 Simulating a Kepler Orbit Disk 
Using cylindrical polar co-ordinates, let a point on the surface of the disk have position vector 

(relative to its centre):- 
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                         (4.23) 

Assume that we are viewing the disk in the ik plane at elevation angle   to the ij plane i.e. from a 

direction with unit vector:- 

                        (4.24)  

We will also assume that it is rotating anti-clockwise i.e with an angular velocity   , therefore   is the 

unit normal to the disk. 

For circular Kepler orbits we know the velocity varies with the orbit radius according to:- 

    
  

 
          (4.25) 

Therefore given the inner radius and the velocity at this radius,    and        respectively, we can 

write:- 

      
 

 
         (4.26)  

Therefore 

      
 

 
    

 

           (4.27) 

 For a disk of outer radius    the total intensity received is given by:- 

           
  
 

  

 
             

  
 

  

 
          

            (4.28) 

Where:- 

                        (4.29) 

We need to integrate the function   along a contour of constant line of sight velocity to determine 

the intensity of light received at a Doppler shift appropriate to that velocity. 

The velocity at a given point   on the disk is given by:- 

          

   

      
         

     
 

 
                (4.30)  

Therefore, equating the line of sight velocity to the Doppler shift we have:- 

                  
 

 
 

   

  
       (4.31) 

or:- 

   
    

        
  

 

 
            (4.32) 
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Where K is a, dimensionless, constant for a given Doppler shift    and we now need to evaluate the 

line integral 

             
  

  
  

  

  
       (4.33)  

Where, using equation (4.32) the line element differentiated wrt r is given by:- 

 
  

  
      

  

  
 
 

 
 

 
 

      

           (4.34) 

So finally, integrating over both the front and rear quadrants we have:- 

                
      

       
    

 
    

      

       
    

    
    (4.35) 

The limit                  where    is defined from 4.32 with   
 

 
 and    

 

   . Whilst the limit 

     represents the “shadow” of the star on the rear quadrant of the disk and needs a bit more work 

to define. 

Assuming the star is represented as an oblate spheroid the mathematics of section 4.1 applies and in 

particular on the visible limb we have         which results in the relation given in equation (4.19) 

which we can re-write as:- 

       
         

    
  

  

  

    

    
  

    

       
     (4.36)  

Where we have used equation (4.3) to arrive at the last expression and 
  

  
 is the “oblateness” ratio 

  . 

Thus we can determine:- 

      
 

    
    

       
 
 
  and        

 

    
       

    
 
 
   (4.37) 

Now a point on the visible limb satisfies equation (4.36) and has position vector given by equation 

(4.6)  i.e:- 

                                       (4.38) 

So it follows that the projection of    along direction   intersects the disk at the point:- 

     

 

 
     

    
    

       
 
 
 

 

          
       

    
 
 

 

 
 

   
    

    
    

       
 
 
    (4.39) 
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Note that, for the back of the disk,      is –ve hence the choice made for the signs of      and 

     in (4.37). With this sign choice both terms in the expression for the component along the   

direction of    are -ve. 

The magnitude        reduces to:- 

        
           

               
  

    

      
 
 

      (4.40)  

Note: if we set          and   
 

 
 then equation 4.40 yields      as required of a 45 

degree tangent piercing the equatorial plain of a unit sphere. 

Now using equation (4.32) we can eliminate   in (4.40) to yield:- 

                      
            

         
      

             
 

         
    (4.41)  

Thus given a value for K we can determine      by solving equation 4.41 and choosing the root that 

lies between      and      where, setting     in equation (4.41):- 

         
             

         
        (4.42) 

Note: if we set      and   
 

 
 then equation (4.42) again yields      as we would expect.   

4.2.3 Non-Uniformly Emitting Kepler Orbit Disk 

It is possible to include a dimensionless function of   into (4.35) to simulate a disk which varies in 

emission intensity radially over its surface with peak intensity at radius   :- 

                    
      

       
    

 
        

      

       
    

    
   (4.43) 

The function       
  

 
 
  

  if      and       
 

  
 
  

 if       has been implemented in the 

custom software. 

5.0 Convolution of Two Distributions 
Given a histogram starting distribution vector      with known (not necessarily uniform) bin widths 

(   ) we can apply a second spreading distribution to yield the resultant distribution vector      via 

the matrix operation:- 

                (5.1) 

where              
   

   
  and D is the second distribution function. 
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6.0 Saturation Effects in Absorption Lines 
In this section we will first justify and describe the linear absorption model that we shall use 

assuming a single layer photosphere in thermal equilibrium. Next we will relate the absorption line 

profile to the dynamics of the absorbing atoms in the photosphere and finally obtain a relationship 

between the amount of absorption occurring between different lines of a series. 

6.1 The Absorption Model 
The principles behind this model can best be understood if we imagine isolating a section of a stellar 

photosphere in an insulating box with perfectly reflecting walls - as far as the photosphere’s 

Planckian photon field is concerned. The walls are however perfectly transparent to all photons from 

an external Planckian source of the same temperature. If the external source is viewed through the 

box then we assume only those photons that suffer no absorption emerge from the front face of the 

box. Any absorbed photons from the external source are scattered and emerge from other faces of 

the box. Thus from the side of the box we would see an emission spectrum whilst the front face 

would present an absorption spectrum.  

This configuration may seem somewhat contrived but such is the power of assuming thermal 

equilibrium that, as the configuration could occur and everything “adds up”, then it must be 

indistinguishable from other possible configurations. The downside is of course that in reality not all, 

and possibly few, photospheres will be well modelled by a single layer in thermal equilibrium. 

However by comparing real spectra to this simple model it should be possible to speculate on the 

reasons for any deviation. More accurate multi-layer models exist but those will be left to the 

professionals. 

6.2 Linear Absorption Model 
The i to j principle quantum level transition absorption line profile (j>i) at a given temperature T, 

expressed as a photon number flux per unit wavelength, will be represented by the function 

        . The change in          when passing through a unit area slab of thickness dx at position x 

is given by:- 

                                      (6.1)  

    is a function of wavelength   by virtue of the dynamics of the stellar photosphere (pressure, 

rotation and thermal motion). This dynamics is represented by the function       which is the 

number of absorbing atoms per cubic metre per unit wavelength in the ith principle quantum state 

and able to transition to the jth state by absorbing a photon of wavelength  . The final factor     is a 

“capture cross-section” and represents the probability of absorbing a photon to transition from the 

ith to jth state and is defined in the rest-frame of an atom where we always have      . 

Equation (6.1) can be integrated (w.r.t.  ) to yield:- 

           
        

        
                    (6.2) 

Where t is the thickness of the photosphere and we have normalised the photon number to a 

continuum of 1.0. The photon number at x = 0 is given by the Planck function in the form of a 

number flux (see section 6.4) i.e:- 
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   m-2 s-1     (6.3) 

          in fact represents the measured normalised absorption profile, in the remainder of this 

section we will not indicate the photosphere thickness explicitly and just refer to the normalised 

photon i to j absorption profile as       . 

 Note that:- 

                     (6.4) 

Where    is the total number of atoms m-3 in state i. Now defining a scale factor sj using:- 

                        (6.5) 

Where             , we can write (6.2) as:- 

                                 (6.6) 

Next we shall modify the notation further by defining an “equivalent emission line” via:- 

                        (6.7) 

       is the normalised emission line profile that would be seen if we could selectively observe the j 

to i emission process within the star’s photosphere. 

So we can write:- 

                                (6.8) 

And as            it follows that:- 

                             (6.9) 

Taking natural logarithms of (6.8) and (6.9) we can deduce:- 

        
          

            
        (6.10) 

and therefore:- 

                
      

         (6.11) 

We can use (6.10) to generate an equivalent emission line corresponding to a particular measured 

absorption line. This emission line can then be analysed to produce a model of the photosphere 

dynamics (Temperature, Pressure and Rotation). The resulting model can then be used to generate 

the equivalent emission line for a second line in the spectral series. To complete the process (6.11) 

can be used to predict the expected absorption line. The following sub-sections will fill in the details 

of this analysis method. 
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6.3 Relation between two lines of a series 
For a second line of a spectral series we can write (6.8) as:- 

                                (6.12) 

Taking the natural logarithm of (6.12) and it’s counterpart for level k we can deduce:- 

                  

               

                      (6.13) 

Where we have given the wavelength symbol a single subscript to indicate the different wavelength 

variables. From (6.5) we deduce that for any two lines of a spectral series 

                                (6.14) 

or 

                     (6.15) 

Where    is the equivalent width of the j emission line which is equal to the area of the normalised 

line as obtained by integrating with respect to wavelength. Substituting into (6.13) we finally obtain:- 

                    

        
                (6.16) 

as            by definition. All factors on the right-hand side of equation (6.16) are now known 

except for the capture cross-sections which we will determine in the following sub-section. 

Note that from (6.9) we have:- 

     
             

     
        (6.17)  

Substitution from (6.15) allows us to determine that:- 

     
               

     
        (6.18)  

So once     is determined we can also obtain a value for the number of atoms m-3 in state i 

multiplied by the photosphere thickness i.e. the column density. 

6.4 Einstein Coefficients 
Capture and emission processes between two atomic levels with principle quantum numbers i and j 

(j > i) are governed by the Einstein coefficients. Einstein coefficients can be calculated in various sets 

of variables we will use:- 

    units m-3, is the number density of hydrogen atoms with an electron in the  th energy 

level at a given point in a photosphere. 

 gi  is the electron degeneracy of the ith energy level. 

     units m-2 s-1 is the number flux of photons that can induce the i to j transition.  
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        units m-2 s-1, is the Planck distribution photon number flux at temperature T and 

transition wavelength  . 

     with units s-1, is the Einstein coefficient for spontaneous photon emission from the 

electron n=j to n=i level transition (j>i). 

     units m2, is the Einstein coefficient for electron stimulated emission from the n=j to n=i 

level.  

      units m2, is the Einstein coefficient for photon capture resulting in an electron n=i to n=j 

transition.  

The   and   Einstein coefficients are fundamental properties of their associated atom and whilst the 

  coefficients can be measured or calculated using quantum mechanics, the   coefficients are 

normally derived from the  ’s by considering how atoms in thermal equilibrium interact with a 

thermal equilibrium radiation field of the same temperature. Under these conditions the electron  

population of the atomic levels are known allowing the   coefficients to be calculated. To obtain the 

relation between the   and   Einstein coefficients note that the rates of change of level populations 

in an atom can be expressed as:- 

  
   

  
 

   

  
                              (6.19) 

 In equilibrium  
   

  
 

   

  
   therefore we can deduce:- 

 
  

  
 

      

           
         (6.20) 

In thermal equilibrium detailed balance requires:- 

                      (6.21) 

which together with the Boltzmann relation:- 

        
  

  
 

  

    
 

   

             (6.22) 

allows us to deduce in units of m2:- 

        
      

     

  
        

          (6.23) 

To proceed further we need an expression for    , now the Planck function can be expressed in two 

forms:- 

1. Energy density          
    

  

  

 
  

     

 J m-3 

2. Energy flux          
     

  

  

 
  

     

 Wm-2 
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It seems most appropriate in our case to use form 2 as our absorption model is framed in terms of a 

flow of photons through a photosphere. Dividing the Energy flux by the photon energy 
  

 
 yields the 

photon number flux:- 

          
   

  

  

 
  

     

  m-2 s-1        (6.24) 

Multiplying by a Dirac delta probability function and integrating over all wavelengths yields the 

result:- 

               m-2 s-1       (6.25) 

Substituting from (6.24) into (6.23) and using (6.25) we obtain:- 

       
     

          

  
        

   

      
 

   
  m2     (6.26)  

We can now relate the Einstein B coefficient for an i to j capture event to the corresponding A 

spontaneous emission constant:- 

     
  

  

      
 

    
   m2       (6.27) 

The A Einstein coefficients are readily available in the literature from detailed quantum calculations, 

Table 6.1 lists them for transitions of the Hydrogen Balmer series. 

Table 6.1 Hydrogen Einstein Aji Coefficients  108 s-1 

i\j 2 3 4 5 6 

1 4.69669 0.55727384 0.1277960 0.0412330 0.0164334 

2 0 0.44082910 0.0841572 0.0252935 0.0097278 

3 0 0 0.0898228 0.0219982 0.0077796 

4 0 0 0 0.0269813 0.0077078 

5 0 0 0 0 0.0102497 
 

6.5 Relationship between the Einstein Coefficients and     

Although the     have units of area they are not the capture cross-sections we seek and indeed if we 

substitute their values into (6.16) predictions of absorption are in error by many orders of 

magnitude. In addition the relative absorption amplitudes are observed experimentally to be 

temperature dependent which the    are most definitely not. In this section we will derive the 

relationship between the Einstein Coefficients and    .  

To proceed note that we must have:- 

 
           

           
 

  

  
         (6.28) 

if (6.28) did not hold the level populations over time would depart from their equilibrium values. 

Thus:- 
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         (6.29) 

Note both the     and the     are functions of the level population and photon field variables and 

can be explicitly related if desired. 

From (6.29) we can deduce:- 

     
  

        

  

  
         (6.30)  

Where   , for all lines of a given spectral series, is a constant with units s-1. We will define the    in 

terms of the Einstein coefficients via:-  

    
 

  
      

 
               (6.31) 

where   is the fine structure constant and we have ignored the effects of stimulated emission. So we 

can finally write:- 

     
 

  
  

  

        
      

 
         m2     (6.32) 

Equation (6.32) together with (6.22) and (6.24) allow all capture cross-sections to be calculated for 

any given temperature. In practice the summation in equation (6.32) decreases rapidly with index k 

and is therefore convergent, it is truncated at k = 20 within the software implementation. 

Whilst (6.30) has been fully justified (6.31) does need more consideration. The summation term in 

(6.31) represents the total emission rate and so is a reasonable factor to employ as a “Lego brick” to 

construct the factor   . Including this factor means the capture cross-sections are being expressed as 

proportions of the total emission rate with those proportions being determined by the appropriate 

level population and the Plankian photon flux.  

Regarding the inclusion of the factor  , this factor often appears in equations describing the 

interaction between photons and electrons e.g the “Oscillator Strength” , so is again a reasonable 

factor to include. Up to this point these observations are the only justifications for choosing to 

define    as written in (6.31). However, we will demonstrate in the next section that the capture 

cross-sections so defined lead to acceptable predictions for known properties of the Sun. 

Note, if we wish to include the effect of stimulated emission then (6.32) would become:- 

     
 

  
  

  

        
       

           
 

   
   

 
         m2   (6.33) 

7.0 Comparing Theory with Known properties of the Sun 
First a little Thermodynamics, the perfect gas law states that:- 

                (7.1) 

where P is pressure, V is volume, T is absolute temperature, n is the number of moles of the 

particles, R (= 8.31441) is the molar gas constant therefore:- 
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               (7.2) 

where    is the number of moles of the particles per unit volume, defining N  as the number of 

particles per unit volume we have:- 

   
 

  
            (7.3) 

where    is Avogadro's number (= 6.022045e23). An alternative way of writing the same equation 

is:- 

               (7.4) 

Where k is Boltzmann's constant (=1.380662e-23).  

A given stellar line profile in the Hydrogen Balmer series can be modelled using the theory of 

sections 2, 3 and 4 thus obtaining values for the temperature T , from the Planckian continuum, and 

pressure from the Lorentz distribution half width 
  

 
 via equations (3.9)  and (7.4) given a value for 

the impact parameter  . 

We can then use Saha’s equation to determine the number of neutral atoms    and ionised atoms 

    . Saha’s equation states:- 

    
  

  

        
    

  
         (7.5) 

where       is the ionisation energy of, in this case, Hydrogen (13.6eV),   is the electron thermal de 

Broglie wavelength     
  

      
  and    is the electron rest mass. Note that          

therefore (7.5) can be solved as a quadratic in    . 

 

Table 7.1: Published data on the Solar photosphere 
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Only the neutral hydrogen atoms produce spectral lines and of these only those in principle 

quantum state i=2 are the base level for the Balmer series, Boltzmann’s equation states:- 

      
  

 
    

   

     
           (7.6) 

where      is the Lyman wavelength 1216 A. Finally having obtained a value for      as a function 

of the impact parameter   we can use equation (6.19), with i = 2, to obtain a corresponding value for 

the thickness of the photosphere as a function of  . In a separate document I detail the analysis of 

the solar Hydrogen Balmer alpha and beta lines. With an impact parameter    4.0e-10, the solar 

photosphere was calculated to have a thickness of 400.41 km (387.39 km when stimulated emission 

is included, see equations (6.32) and (6.33)) and a pressure of 0.1135 Bar. This result compares 

remarkably well with published data given in table (7.1). Note also that the value of the column 

density depends on the absolute value of the capture cross-section via equation (6.18) so the good 

agreement lends strong support to the definition in equation (6.33). 

7.1 Multi-Layer Model Extension Applied to the Sun 
In this section I will develop the global single layer thermodynamic equilibrium model so far 

presented into a local multiple layer thermodynamic equilibrium model. However without the 

physics to connect the layers via an “equation of state”, the model can currently only be applied to 

the Sun for which I have layer information (see table 7.1). 

The reasoning behind this extension is that any layer is both, a source of continuum radiation for 

itself and upper layers and an absorber for its own and lower layer radiation. Further within a layer, 

both the matter and radiation have their thermal equilibrium distributions. Thus combining 

equations (6.8) and (6.25) we can write for layer   of  , counting from the deepest:-  

    
                    

     
  

      
            (7.7) 

Where    
     represents the un-normalised number of     photons leaving the star’s photosphere 

that originated in layer m. We can re-write (7.7) as:- 

    
                    

     
    

       
         (7.8) 

As before we define    
         and   

   
    

  therefore:-  

                      
    

      
 

  
   

 
   

 
         (7.9) 

Where      
    

    is the k th layer’s column density of atoms in the i th state. Thus the total line 

centre normalised amplitude is:- 

          
        

           
   

        (7.10)  

When the temperature, pressure and thickness of the layers comprising a star’s photosphere are 

known a-priory then           as defined in equation (7.10) is fully calculable but the task remains to 
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determine the absorption in each individual layer so that equation (6.11) can be used to generate 

corresponding absorption profiles that are then summed to obtain the overall line profile. 

We know the proportion of photons that successfully traverse the first layer is given by:-  

    
       

          

    
      

 

  
   

           
   

        (7.11)  

And therefore using equation (7.9):- 

    
           

       
         

           
   

  
    

      
 

  
   

     (7.12) 

So we can define the following recursive relation for the proportion of photons that successfully 

traverse the nth layer:- 

     
           

         
         

           
   

  
    

      
 

  
   

     (7.13) 

Where    
        .  

7.2 Estimating Photosphere Pressure from Surface Gravity 
The pressure at the base of a photosphere must support the column of matter above it, therefore 

we can write:- 

         N m-2       (7.14) 

Where    is the pressure,    is the surface gravity (m s-2) and    is the column mass density (kg m-2). 

For the Sun          m s-2. 

Equations (6.18) and (6.33) enable us to calculate a value for the compound property     i.e. the 

column number density of atoms in the i =2 principle quantum state and therefore using the 

Boltzmann relation 
  

  
 

  

    
 

   

      we can write for the compound property    :- 

     
   

 
 

  

             (7.15) 

Where     is the number density of neutral atoms in the photosphere. We now need to use Saha’s 

equation (7.5) to determine the ionised atom number density     but as equation (7.5) is nonlinear 

we have to make this calculation as a function of the photosphere thickness   given that     

       . Therefore:- 

         
     

        
    

  
        (7.16) 

We can now write:- 

                           (7.17)   
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 where M is the mass of the identical impacting atoms.  

 


