1.0 Planck Distribution
Plank’s distribution law for the energy flux of radiation emitted from a black body at temperature T
per unit area per unit time, as a function of frequency, is:-

2mh v3
P(T =
(T\v) ¢ exp(iz)-1

If we integrate (contour integration) this over all frequencies we get the total radiated energy flux U

(1.1)

(units W m?) i.e.
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The last step in (1.2) produces the Stefan-Boltzmann law where ¢ is the Stefan-Boltzmann constant
(= 5.67x10® W m2 K™). Note that the total energy density

_ 8mh (oo v3 8 mok* 4 _ 4 4
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Now, given that frequency and wavelength are related by v = %which implies:-

dv = —Aizdl (1.3)

we can write:-
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So, Planck’s distribution law for the energy flux of radiation emitted from a black body at
temperature T per unit area per unit time, as a function of wavelength, is:-

__ 2mhc 1
PO = o))

Note that the functions P(T,v) and P(T, 1) are different and when plotting the distribution against
wavelength rather than frequency we are giving the x axis a non-linear stretch (defined by equation
(1.3)), therefore the peak frequency in P(T, v) and peak wavelength in P(T, 1) are, somewhat

(1.5)

counter intuitively, not related by v = %

In prism/grating spectroscopy we are measuring P(T, 1) (presumably a photoelectric effect
experiment could directly measure P(T,v)) so we must use equation (1.5) to generate a black body
curve.

We can look for the peak positions in the two distribution functions ( v, and 4,) by differentiating
equations (1.1) and (1.5) then setting both differentials to zero. For P(T, v) we obtain:-



vpexph(:}%?)% _3 (1.6)
exp (k—f) -1

whilst for P(T, 1) we obtain:-

iexp(—hc )i
2p  P\ApkT kT

exp(lhiT) 1 =5 (1.7)

Equation (1.7) can be written as:-

e (22}

=5 (1.7a)
exo(22)1

with v, = Ai Now equations (1.6) and (1.7a) are identical except for the number on the right hand
P

side and so both cannot be true simultaneously. In an attempt to “square the circle” we could
compromise and solve:-

KT /KT — 4 (1.8)

but this is unphysical. It’s better just to accept that v, * 0 in which case we need to fit the
I’

distribution given by equation (1.5) to our prism/grating derived data and calculate the peak from
equation (1.7), note as this is a transcendental equation it needs to be iterated. Dropping the p

subscript and letting a = % then we can define the following functions from equation (1.7):-

aexn(§)
FOD = rm (1.9)
dz;;z) F'(1) = F(/l)+5 {F(A) 14 __} (1.10)

then, to iterate guess a A, and repeatedly calculate:-

F(A)

2.0 Thermal Spectral Line Broadening
The probability of a fluctuation AE from the mean energy in a system in thermal equilibrium at
absolute temperature T is:-

_aE
P(AE) = Pye it (2.1)

As AE = %mAV2 this corresponds to an atomic velocity fluctuation (AV) probability of:-

mAv2

P(AV) = Pye ™ 2’ (2.2)



A

Which, as AV = ¢
Ao

, in turn corresponds to a Doppler shift (AL) probability of:-

_chA/lz

P(A)) = Pye 2kT43 (2.3)

i.e. a Gaussian distribution:-
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with o = mczloandPo——Om

FWHM: P(Mpwim) = 2ie.:-

1_ - Miwam
2 ¢ T2 (2.5)
Therefore

3.0 Pressure Spectral Line Broadening

Spectral line widths are affected by pressure, the more frequent atomic collisions are the more a
given spectral line will be broadened. This is modelled as damped oscillator yielding an ordinary
differential equation which has as its solution the Lorentzian distribution (“Atomic Astrophysics and
Spectroscopy “ Anil K. Pradhan and Sultana N. Nahar):-

) F)Z}da) =1 (3.1)

(w—a)o)2+(3

fooo L(w)dw = %fooo{

r=y+ tl where y is a quantum mechanical “damping” factor which can be assumed negligible
0

1 .
compared to - which is the average collision frequency, so we have:-
0

r==+ (3.2)
to

The book referenced above goes on to deduce:-

~ = Nvg(mpo)? (3.3)

where N is the number density of atoms, pg is an impact parameter (units m) and vy is the relative
mean velocity between impacting particles. For a Maxwellian distribution of velocities we have:-

vy =220 (- + i)]o's (3.4)

T M1 MZ

where M;and M, are the masses of the impacting particles. For identical particles of mass M we
therefore have:-



vy =4[5 (3.5)
Changing variable to wavelength using w = Zlﬂ we can deduce:-

o
foooL(;D dl ~ %fooo %

di=1 (3.6)
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where:-

2l
A5

The approximately equal sign (=) occurs in (3.6) as we have approximated the term A4, to A% in the
change of variable calculation. This results in a symmetric distribution function and introduces
negligible errors if, as is the case, the width of a line is small compared with the wavelength. So we
have:-

L) = E{L} (3.8)

™| a-1024(T')y)”
The half height occurs when (A — 4,) = + FI/Z'

We can substitute from (3.3) into (3.7) to obtain

2
r’ a2 A
== ENUO(TIPO)Z = Nvy ( £o \/%) (3.9)

2
The questions remain as to whether p; is a constant for all spectral lines of a series and independent
of temperature.

Regarding the first question, atoms excited to higher energy levels are effectively larger and so the
collision parameter p, can be expected to vary inversely with wavelength as larger atoms do not
need to approach as closely (centre to centre) to exert an influence. | will therefore make the
working hypothesis that we can define a collision parameter p, which is a constant for all lines of a

series, by:-
e Y
p= \[ (3.10)
Yielding:-
r 2
— = Nvyp (3.11)

> =
3 1

Note: p has units mz sz.

Regarding the temperature dependence of p,, on average the effective size of atoms increases with
temperature and so both p, (and therefore p) can be expected to increase with temperature.



4.0 Rotational Spectral Line Broadening

4.1 Uniformly Emitting Oblate Spheroid
Using oblate spheroidal co-ordinates, let a point on the surface of the star have position vector
(relative to its centre):-

r=a (cosh §cosncos@ i+ cosh§cosnsingj+sinhg sinn&) (4.1)
a>0 =20, — % <n< g 0 < ¢ < 2m and the volume integral can be written as:-

V = [[[ hehyh,dédnde
With  hg = hy = a(sinh?§ + sin? )72 and h, = acosh&cosn

In this analysis | will assume that the star is rotating about the z axis i.e. w = wk and we are
observing the star from within the i, k plane at a angle ¥ relative to the x axis i.e from the direction:-

d=cos9 i+sindk whereOSﬁS% (4.2)

The degree of oblateness is determined by the coordinate & together with the constant a. Spherical
symmetry results if £ > 1 and a < 1 such that 754, = a cosh & = a sinh &. Disk symmetry results if
& = 0in which case 1y, = a. Atintermediate values of ¢ the equatorial radius (rz) and the polar
radius (1p) are related by:-

E — coth & (4.3)
rp

The first task is to determine the unit normal (ﬁ) to a elemental spheroidal surface area at position
1. As the co-ordinate system is orthogonal curvilinear the normal can be calculated from:-

n= L %{sinhf cos 1 cos @i + sinh & cosn sin@j + cosh & sinnk}
hg d§ (sinh? & +sin2 )2 -

Therefore, assuming uniform intensity emitted per unit area (I,), we can determine the total
received intensity from:-

=1, ffd.f hyhydnde = [[ I1(n,¢) dnde (4.4)
Where

I(n, @) = Iya cosh & cos n{a sinh & cosn cos ¢ cos I + a cosh & sinn sin v} (4.5)

. 1
We will now choose to set a = .

- as then equation (4.1) becomes:-

r=cosncos@ i +cosnsingj+tanh¢sinnk (4.6)

and we see that, setting n = 0, the equatorial radius 7z = 1 and, settingn = + %, the polar radius

rp = tanh¢.



We will specify the equatorial surface velocity as a fraction of c, this can be achieved by setting
0<=<1,

We want to integrate I(n, ¢) along contours of constant line of sight velocity, therefore we need to

calculate the velocity at any point from:-

k

i

i j
vV=wAr = 0 0 w (4.7)
cosncos@ cosnsing tanhésinn

From which we obtain:-
vV=-w (cosnsingo£'+cosncos (pj) (4.8)
Therefore the line of sight velocity is:-
5 . AAc .
v=v.d=—wcosnsingcosy = - (Doppler shift) (4.9)
0

For a given A and A, define the constant K as:-

_ . _ =(A-2)
K = cosnsing = —lo(%) e (4.10)
which implies |K| < 1, rearranging we have sing = % and therefore:-
) 1
K 2
cosp =+ [1 — (Cosn) ] (4.112)

These last equations define the contour along which we wish to evaluate I(n, ¢) for a given value of
K i.e.itrelates 7 and ¢ so we can determine I(n, (p(n)) = I(n) to be:-

1

K \2]2 . .
) ] cos Y + sinn sinv (4.12)

cosn

I(n) =1, cosr){tanhfcosn [1 - (

For a given value of K (i.e. given AA) we can evaluate the following integral to obtain the received
intensity at a particular AA:-

max dl
1K) = [/ 1) g dn (4.13)

where dl is the line element given by:-

1
a_ [ y? de)?]2
o= [(hn) +(ry %) ] (4.14)
Differentiating equation 4.10 we have:-

d_(pz_sinnsinfp (4 15)
dn cosn cos @ '

therefore:-
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1
dl _ [sinh?¢&+sin’n 2. (d¢ 212
an = [—coshzf + cos“n (dn) (4.16)
Substituting from equations (4.11) and (4.15) we obtain:-

1
2

.2 K 2
dl sinh? §+sin?2y S 77(cosn)
o= . A (4.17)
n cosh?¢ 1_( K )
cosn
Therefore we can write:-
I(K) =
1 2

2
. 2 K
K sinh2 &+sin2y S 7’(cos n)

272
Nmax . .
Iy fnmin cosn [tanhfcosr) [1 - (Cosn) ] cos? + siny sm19” coshZE + 1_( - )2 dn

cosn

(4.18)

We now need to determine the limits of integration, the limits are reached when the contour hits
the visible limb of the star. On the limb we have the condition:-

o

fi.d = (sinhfcosncosq) i+ sinh&cosnsingj + coshfsinnk).(cosﬁ i+ sinﬁ@) =
which implies:-
sinh & cosn cos ¢ cos Y + cosh { sinysiny = 0 (4.19)

substituting for ¢ and re-arranging we have:-

Ktanh ¢ 2
1+( tand )

14 (2nn)*

cosn == (4.20)

This needs to be solved for the two limits, define —% <n<0and % =Ny < 37” .Onelimb
intersection (n,) will be in the northern hemisphere and the other in the southern. If, as will
generally be the case n, > % (exception 9 = g), we will need to split the integral such that

I = I; — I, where [; is integrated between limits 177 and 71,4, Whilst I, is integrated between limits

Nmax aNd N3 where 0,4, is calculated from K = cos 7 sin ¢ with ¢ = gi.e.:—

Nmax = cos™'[K]| (4.21)

The special case of a sphere is obtained by letting ¢ — oo in which case equation 4.18 becomes:-
1
2

] dn  (4.22)

1
2

— 10 Nmin cosn |cosn P COoS sinn sin

sin? ( K )2
n cosn

1+ 3
1-(cos7)

4.2 Simulating a Kepler Orbit Disk
Using cylindrical polar co-ordinates, let a point on the surface of the disk have position vector
(relative to its centre):-



(4.23)

f=T‘(COS(p 5’+sin(p]_')

Assume that we are viewing the disk in the ik plane at elevation angle 9 to the ij planei.e. from a
direction with unit vector:-
(4.24)

d=cos9 i+sindk
We will also assume that it is rotating anti-clockwise i.e with an angular velocity k , therefore k is the

unit normal to the disk.
For circular Kepler orbits we know the velocity varies with the orbit radius according to:-

’GM
v= |—
r

Therefore given the inner radius and the velocity at this radius, vy and (= 1) respectively, we can

(4.25)

write:-
(4.26)

1
17:170\/;

Therefore
(4.27)

v 1
w(r):;:vo\/;

For a disk of outer radius ry the total intensity received is given by:-

I = fozn flrl I(r,@)drde = I, fozn flrl d.krdrde = n(r? — 1)I,sind (4.28)

Where:-
(4.29)

I(r,p) =rlysin?d
We need to integrate the function I along a contour of constant line of sight velocity to determine

the intensity of light received at a Doppler shift appropriate to that velocity.

The velocity at a given point 7 on the disk is given by:-

i J k
V=WAr=r| 0 0 w(r) =v0\/%(—sin<pg+cos<pj) (4.30)
cos¢@ sing 0
Therefore, equating the line of sight velocity to the Doppler shift we have:-
v.d = -, singocosﬁ\/z=A—’1C (4.31)
- = T 2.0
or:-
(4.32)

K=—22%_— [I5pn
vocosﬁ/lo_ r ¢



Where K is a, dimensionless, constant for a given Doppler shift A1 and we now need to evaluate the
line integral

_ (61 at
I(K) = 9, I(r, @) » do (4.33)
Where, using equation (4.32) the line element differentiated wrt r is given by:-
dp\? _ 1 ’4—31’1(2
1+ (r dr) T 24 1-7K? (4.34)
So finally, integrating over both the front and rear quadrants we have:-

— 2 . - 2
I(K) = I, sinﬁ{flrmaxr /%dr + [y ’%dr} (4.35)

The limit 13,4, = min (7, 1) where 15, is defined from 4.32 with ¢ = %and r, = % . Whilst the limit

Tmin represents the “shadow” of the star on the rear quadrant of the disk and needs a bit more work
to define.

Assuming the star is represented as an oblate spheroid the mathematics of section 4.1 applies and in
particular on the visible limb we have ﬁé = 0 which results in the relation given in equation (4.19)
which we can re-write as:-

cosptanhé _Trpcosg _ COs@
tand o rg tand - Op tanv

tann = — (4.36)

Where we have used equation (4.3) to arrive at the last expression and :—E is the “oblateness” ratio

P
Op.

Thus we can determine:-

1 . 1
cosn = T and sinn = — - (4.37)
cos @ Oy, tand
1+<Obtan19) 1+( cos @ )

Now a point on the visible limb satisfies equation (4.36) and has position vector given by equation
(4.6) i.e:-

r =cosncos i +cosnsingj+tanh{sinnk (4.38)

So it follows that the projection of r; along direction d intersects the disk at the point:-

cos 1 . sin s
1 = —( L+ \ i+——2 _j (4.39)
- 2 2 2=
cos @ Op tand Ccos ¢
\ 1+(0b tam?) Optand 1+( cos @ ) / 1+<0b tam?)




Note that, for the back of the disk, cos ¢ is —ve hence the choice made for the signs of cos n and
sinn in (4.37). With this sign choice both terms in the expression for the component along the i
direction of 7, are -ve.

The magnitude |rp| = r reduces to:-

T=\/1+[ 1+(0p tan9)? ]( cos @ )2 (4.40)

cos2 p+(0ptan9)2] \0ptandd

Note: ifweset 0y, = 1,9 =mand 9V = %then equation 4.40 yields r = V2 as required of a 45

degree tangent piercing the equatorial plain of a unit sphere.

Now using equation (4.32) we can eliminate ¢ in (4.40) to yield:-

2
K?r® = [1+ (0p tan 9)2]r? — [H2OA007 | jea {“(O”ta“'”}]

(Optan )2 (Optan)? (4.41)

Thus given a value for K we can determine 7y,,;,, by solving equation 4.41 and choosing the root that
lies between r = 1 and rx—g where, setting K = 0 in equation (4.41):-

[1+(0p tan9)?]

(Optan¥)? (4.42)

Tk=0 =
Note: ifweset 0y, = 1and 9 = %then equation (4.42) again yields r = /2 as we would expect.

4.2.3 Non-Uniformly Emitting Kepler Orbit Disk
It is possible to include a dimensionless function of r into (4.35) to simulate a disk which varies in
emission intensity radially over its surface with peak intensity at radius 7,:-

1(K) = I sina{ e oy |22 ar ¢ LT = ST dr} (4.43)

-n
The function f(r) = (—p) ifr, >rand f(r) = (;) if , <7 has been implemented in the
P

custom software.

5.0 Convolution of Two Distributions

Given a histogram starting distribution vector (V) with known (not necessarily uniform) bin widths
(AA;) we can apply a second spreading distribution to yield the resultant distribution vector (V;) via
the matrix operation:-

where m;; = D()\ — A ) ( ) and D is the second distribution function.
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6.0 Saturation Effects in Absorption Lines

In this section we will first justify and describe the linear absorption model that we shall use
assuming a single layer photosphere in thermal equilibrium. Next we will relate the absorption line
profile to the dynamics of the absorbing atoms in the photosphere and finally obtain a relationship
between the amount of absorption occurring between different lines of a series.

6.1 The Absorption Model

The principles behind this model can best be understood if we imagine isolating a section of a stellar
photosphere in an insulating box with perfectly reflecting walls - as far as the photosphere’s
Planckian photon field is concerned. The walls are however perfectly transparent to all photons from
an external Planckian source of the same temperature. If the external source is viewed through the
box then we assume only those photons that suffer no absorption emerge from the front face of the
box. Any absorbed photons from the external source are scattered and emerge from other faces of
the box. Thus from the side of the box we would see an emission spectrum whilst the front face
would present an absorption spectrum.

This configuration may seem somewhat contrived but such is the power of assuming thermal
equilibrium that, as the configuration could occur and everything “adds up”, then it must be
indistinguishable from other possible configurations. The downside is of course that in reality not all,
and possibly few, photospheres will be well modelled by a single layer in thermal equilibrium.
However by comparing real spectra to this simple model it should be possible to speculate on the
reasons for any deviation. More accurate multi-layer models exist but those will be left to the
professionals.

6.2 Linear Absorption Model

The i to j principle quantum level transition absorption line profile (j>i) at a given temperature T,
expressed as a photon number flux per unit wavelength, will be represented by the function
P;j(4,x). The change in P;; (4, x) when passing through a unit area slab of thickness dx at position x

is given by:-
dP;j(A,x) = —a;;P;;(4, x)N; (1) dAdx (6.1)

P;j is a function of wavelength A by virtue of the dynamics of the stellar photosphere (pressure,
rotation and thermal motion). This dynamics is represented by the function N; (A1) which is the
number of absorbing atoms per cubic metre per unit wavelength in the ith principle quantum state
and able to transition to the jth state by absorbing a photon of wavelength A. The final factor g;; is a

“capture cross-section” and represents the probability of absorbing a photon to transition from the
ith to jth state and is defined in the rest-frame of an atom where we always have 1 = 4;;.

Equation (6.1) can be integrated (w.r.t. x) to yield:-

~ Pii(At) R
Pt = W = e 0ijtNi(Dai (6.2)

Where t is the thickness of the photosphere and we have normalised the photon number to a
continuum of 1.0. The photon number at x = 0 is given by the Planck function in the form of a
number flux (see section 6.4) i.e:-

11



2mc  dA 2 -1

Py(2,0) = u(A,NdA =L~ m?s (6.3)

ekTA-1

PL-]- (A4, t) in fact represents the measured normalised absorption profile, in the remainder of this
section we will not indicate the photosphere thickness explicitly and just refer to the normalised
photon i to j absorption profile as P;; ().

Note that:-

fNij(/l)d/l = N; (6.4)
Where N; is the total number of atoms m~ in state i. Now defining a scale factor sj using:-

sj [ Ni;(DdA = N; (6.5)
Where Nij (/'ll-j) = 1, we can write (6.2) as:-

Pij(/l) — e—crijtsjﬁij(/'l)d)l (6.6)
Next we shall modify the notation further by defining an “equivalent emission line” via:-

E;ii() = N;(D) (6.7)

Ej; (1) is the normalised emission line profile that would be seen if we could selectively observe the j

to i emission process within the star’s photosphere.

So we can write:-
PLJ(A) — e—O'ijtSjEji(ﬂ)dﬂ (68)
And as Eji(lij) = 1 it follows that:-
(A7) = e 9uUSi .
P] 2 j gjiSitdA (6 9)

Taking natural logarithms of (6.8) and (6.9) we can deduce:-

Ln(Pyi(1)
Ey(1) = —~ 2 (6.10)
7t Ln(Pyj(2i)))
and therefore:-
Eji(A)
P (D) = Py(A) " (6.11)

We can use (6.10) to generate an equivalent emission line corresponding to a particular measured
absorption line. This emission line can then be analysed to produce a model of the photosphere
dynamics (Temperature, Pressure and Rotation). The resulting model can then be used to generate
the equivalent emission line for a second line in the spectral series. To complete the process (6.11)
can be used to predict the expected absorption line. The following sub-sections will fill in the details
of this analysis method.
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6.3 Relation between two lines of a series
For a second line of a spectral series we can write (6.8) as:-

Py (1) = e OikSktEki(H)al (6.12)
Taking the natural logarithm of (6.12) and it’s counterpart for level k we can deduce:-

TikeSkEki(A1) A2

P = [Py (2)] 734 (6.13)

Where we have given the wavelength symbol a single subscript to indicate the different wavelength
variables. From (6.5) we deduce that for any two lines of a spectral series

sj [ E;(DdA = s [ Ex(D)dA =N; (6.14)
or
Sjw; = spwi = N; (6.15)

Where w; is the equivalent width of the j emission line which is equal to the area of the normalised
line as obtained by integrating with respect to wavelength. Substituting into (6.13) we finally obtain:-
O'ikwkdﬂ.k

P (i) = [Pij ()] 701 (6.16)

as E,; (A;x) = 1 by definition. All factors on the right-hand side of equation (6.16) are now known
except for the capture cross-sections which we will determine in the following sub-section.

Note that from (6.9) we have:-

_ ~Ln[Pij(4))]
S]t - Jijdﬂ. (617)
Substitution from (6.15) allows us to determine that:-
o —wiln[Pij(4i))]
N;t = p—y (6.18)

So once g;; is determined we can also obtain a value for the number of atoms m™ in state i

multiplied by the photosphere thickness i.e. the column density.

6.4 Einstein Coefficients

Capture and emission processes between two atomic levels with principle quantum numbersiand j
(j > i) are governed by the Einstein coefficients. Einstein coefficients can be calculated in various sets
of variables we will use:-

e N; units m?, is the number density of hydrogen atoms with an electron in the ith energy
level at a given point in a photosphere.

e g, is the electron degeneracy of the ith energy level.

e P units m™ s is the number flux of photons that can induce the i to j transition.
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e (A, T) units m?2s™ is the Planck distribution photon number flux at temperature T and
transition wavelength A.

e Aj; with units s is the Einstein coefficient for spontaneous photon emission from the
electron n=j to n=i level transition (j>i).

° Bji units m>, is the Einstein coefficient for electron stimulated emission from the n=jto n=i
level.

Bjj units m?, is the Einstein coefficient for photon capture resulting in an electron n=i to n=j
transition.

The A and B Einstein coefficients are fundamental properties of their associated atom and whilst the
A coefficients can be measured or calculated using quantum mechanics, the B coefficients are
normally derived from the A’s by considering how atoms in thermal equilibrium interact with a
thermal equilibrium radiation field of the same temperature. Under these conditions the electron
population of the atomic levels are known allowing the B coefficients to be calculated. To obtain the
relation between the 4 and B Einstein coefficients note that the rates of change of level populations
in an atom can be expressed as:-

de __dN; _

dnN; ;
In equilibrium —d—t’ = % = 0 therefore we can deduce:-
N; BiiPjj
L=—t7J (6.20)
N; Aji+BjL'Pij
In thermal equilibrium detailed balance requires:-
9iBij = 9;Bji (6.21)
which together with the Boltzmann relation:-
N g oS
Z(A,T) =L ==Lek4j 6.22
( ) Nj gi € ( )
allows us to deduce in units of m”:-
9jAji (6.23)

9iBij = —F%—~
Pij<ekTAij—1>

To proceed further we need an expression for P;;, now the Planck function can be expressed in two

forms:-
1. Energy density p(4,T)dA = Sn—gc%l m?
ekTA-1
2
2. Energy fluxn(4,T)dA = 2”;: E Wm?
ekTA-1
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It seems most appropriate in our case to use form 2 as our absorption model is framed in terms of a
flow of photons through a photosphere. Dividing the Energy flux by the photon energy % yields the

photon number flux:-

u(A,T)dA = ﬂ% m?s? (6.24)

4 —
ekTA-1

Multiplying by a Dirac delta probability function and integrating over all wavelengths yields the
result:-

Pij = ,U.(Al], T) I'T]_2 S_1 (625)
Substituting from (6.24) into (6.23) and using (6.25) we obtain:-
9jAji _ Ay 2

_hc =9j 2mc
u(a;m)| i1

We can now relate the Einstein B coefficient for an i to j capture event to the corresponding A

(6.26)

9iBij =

spontaneous emission constant:-

4
gi Ajid
ij === m’ (6.27)
gi 2mc

The A Einstein coefficients are readily available in the literature from detailed quantum calculations,
Table 6.1 lists them for transitions of the Hydrogen Balmer series.

Table 6.1 Hydrogen Einstein A; Coefficients 10°s*

i\j 2 3 4 5 6

1 4.69669 0.55727384 0.1277960 0.0412330 0.0164334
2 0 0.44082910 0.0841572 0.0252935 0.0097278
3 0 0 0.0898228 0.0219982 0.0077796
4 0 0 0 0.0269813 0.0077078
5 0 0 0 0 0.0102497

6.5 Relationship between the Einstein Coefficients and o;

Although the B;; have units of area they are not the capture cross-sections we seek and indeed if we
substitute their values into (6.16) predictions of absorption are in error by many orders of
magnitude. In addition the relative absorption amplitudes are observed experimentally to be
temperature dependent which the B;;are most definitely not. In this section we will derive the
relationship between the Einstein Coefficients and g;;.

To proceed note that we must have:-
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Tikh(dik,T) _ Ni
= 6.28
oiju(Aj,T)  Nj (6.28)

if (6.28) did not hold the level populations over time would depart from their equilibrium values.
Thus:-

Oik _ y.(ll‘j,T)Nk

= 6.29
gij Uik, T) Nj ( )

Note both the g;; and the B;; are functions of the level population and photon field variables and

can be explicitly related if desired.

From (6.29) we can deduce:-

Ki Nj
M(AU T) Nj

aij (630)
Where K;, for all lines of a given spectral series, is a constant with units s™. We will define the K; in
terms of the Einstein coefficients via:-

= 3 Zicie1 AN (6.31)

where a is the fine structure constant and we have ignored the effects of stimulated emission. So we
can finally write:-

a

eem T)Zk i+1 AN m’ (6.32)

O'ij
Equation (6.32) together with (6.22) and (6.24) allow all capture cross-sections to be calculated for
any given temperature. In practice the summation in equation (6.32) decreases rapidly with index k
and is therefore convergent, it is truncated at k = 20 within the software implementation.

Whilst (6.30) has been fully justified (6.31) does need more consideration. The summation term in
(6.31) represents the total emission rate and so is a reasonable factor to employ as a “Lego brick” to
construct the factor K;. Including this factor means the capture cross-sections are being expressed as
proportions of the total emission rate with those proportions being determined by the appropriate
level population and the Plankian photon flux.

Regarding the inclusion of the factor «, this factor often appears in equations describing the
interaction between photons and electrons e.g the “Oscillator Strength” , so is again a reasonable
factor to include. Up to this point these observations are the only justifications for choosing to
define K; as written in (6.31). However, we will demonstrate in the next section that the capture
cross-sections so defined lead to acceptable predictions for known properties of the Sun.

Note, if we wish to include the effect of stimulated emission then (6.32) would become:-

a 1D :
% = 37 wie T)Zk 1 A (1 + 2220 m (6.33)
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7.0 Comparing Theory with Known properties of the Sun
First a little Thermodynamics, the perfect gas law states that:-

PV =nRT (7.1)

where P is pressure, Vis volume, T is absolute temperature, n is the number of moles of the
particles, R (= 8.31441) is the molar gas constant therefore:-

P= gRT = n,RT (7.2)

where n,, is the number of moles of the particles per unit volume, defining N as the number of
particles per unit volume we have:-

p=2Rr (7.3)
Na
where Ny is Avogadro's number (= 6.022045e23). An alternative way of writing the same equation
is:-
P = NKT (7.4)
Where k is Boltzmann's constant (=1.380662e-23).

A given stellar line profile in the Hydrogen Balmer series can be modelled using the theory of
sections 2, 3 and 4 thus obtaining values for the temperature T, from the Planckian continuum, and
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pressure from the Lorentz distribution half width 1%via equations (3.11) and (7.4) given a value for

the impact parameter p.

We can then use Saha’s equation to determine the number of neutral atoms N; and ionised atoms
Nj; . Assuming the number of free electrons (n,) equals the number of ionised Hydrogen atoms i.e.
n. = Ny, Saha’s equation states:-

N Eion
Nj = 5exp (—=29) (7.5)

where Ej,, is the ionisation energy of, in this case, Hydrogen (13.6eV), A is the electron thermal de

Broglie wavelength (A = ) and m, is the electron rest mass. Note that N; = N — Nj;

2mmekT
Solar Photosphere as a Function of
Depth

Depth % Light from Temperature Pressure

(km) this Depth (K) (bars)
0 99.5 4465 58 x10°
100 97 4780 1.7x10%
200 89 5180 39x10%
250 80 5455 58x 107
300 64 5840 8.3x10°
350 37 6420 1.2x 107
3rs 18 6910 14x101
17 400 4 7610 16x107

Source: Freknoi, Mormrison, and 'Wolf, Voyages through the Univerze

Table 7.1: Published data on the Solar photosphere



therefore (7.5) can be solved as a quadraticin Nj;.

Only the neutral hydrogen atoms produce spectral lines and of these only those in principle
guantum state i=2 are the base level for the Balmer series, Boltzmann’s equation states:-
N

_ N1 —hc
Ni=z = 7 exp [kT/llz] (7.6)

where A1, is the Lyman o wavelength 1216 A. Finally having obtained a value for N;—, as a function
of the impact parameter p we can use equation (6.19), with i = 2, to obtain a corresponding value for
the thickness of the photosphere as a function of p. In a separate document | detail the analysis of
the solar Hydrogen Balmer alpha and beta lines. With an impact parameter p = 4.0e-10, the solar
photosphere was calculated to have a thickness of 400.41 km (387.39 km when stimulated emission
is included, see equations (6.32) and (6.33)) and a pressure of 0.1135 Bar. This result compares
remarkably well with published data given in table (7.1). Note also that the value of the column
density depends on the absolute value of the capture cross-section via equation (6.18) so the good
agreement lends strong support to the definition in equation (6.33).

7.1 Element Relative Abundances

Elements other than Helium can be assumed to be present in low concentrations relative to
Hydrogen therefore we can set n, = N/f where N/{ is the number of ionised Hydrogen atoms. In this
case Saha’s equation becomes:-

N

—_— 7.7
NII'IIA3 exp(%)+1 (7.7)

Ny =
Where again N; = N — N;;, N being the concentration of the element in the chosen series base
state.

To obtain an abundance estimate we can use equation (6.18) to relate N to properties of a
measured series line, the photon capture cross-sections and the width of a photosphere as obtained
by modelling a Hydrogen Balmer line i.e.:-

—w;Ln[Pi;(4)]

N, =
I tojjda

(7.8)

With capture cross sections calculated from equation (6.32) assuming the relevant Einstein A
coefficients are known. For any given element its actual concentration would be related to the series
base state concentration N via the Boltzmann equation (6.22).

7.2 Estimating Photosphere Pressure from Surface Gravity
The pressure at the base of a photosphere must support the column of matter above it, therefore
we can write:-

P = gsp. Nm? (7.9)

Where P is the pressure, g, is the surface gravity (m s?) and p, is the column mass density (kg m™).
For the Sun g; = 273.7 ms™.
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Equations (6.18) and (6.33) enable us to calculate a value for the compound property N,t i.e. the

column number density of atoms in the i =2 principle quantum state and therefore using the
—hc

. N — .
Boltzmann relation N—Z = %emlz we can write for the compound property N;t:-
1 1
hc
Nyt ——
Nt =~ Tzek”lz (7.10)

Where N, is the number density of neutral atoms in the photosphere. We now need to use Saha’s
equation (7.5) to determine the ionised atom number density N;; but as equation (7.5) is nonlinear
we have to make this calculation as a function of the photosphere thickness t given that N; =
(N;t)/t. Therefore:-

Niu(6) = \/”g“) exp (— iy (7.11)
We can now write:-

pc(t) = M{N; + N;; ()}t (7.12)
where M is the mass of the identical impacting atoms.

7.3 Multi-Layer Model Extension Applied to the Sun

In this section | will develop the global single layer thermodynamic equilibrium model so far
presented into a local multiple layer thermodynamic equilibrium model. However without the
physics to connect the layers via an “equation of state”, the model can currently only be applied to
the Sun for which | have layer information (see table 7.1).

The model assumed is one in which the radiation from the bottom of the photosphere is filtered by a
total of n layers above that are decreasing in temperature towards the top of the photosphere. Thus
combining equations (6.8) and (6.25) we can write:-

k k
Ly () = (2, To) g €707 (78)
As before we define Ej; (/1”) =1land sk k = N} therefore:-

(Nt)
l] kl aa

Lij (i) = (2, To) H?:o e (7.9)

Where (Nt)ﬁ‘ = Niktk is the k th layer’s column density of atoms in the i th state. Thus the total line
centre normalised amplitude is:-

L A’l
Pyj(A) = :(Q(L],T]O)) (7.10)
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