Hunting Outbursting Young Stars

with the

Centre of Astrophysics and Planetary Sciences (HOYS-CAPS)

at the

University of Kent

How did this HOYS-CAPS Programme come about?

From a BAA Meeting entitled **'Amateur & Professional Collaboration'** held in , Ashford, Kent, on Saturday, 2015, April 25

Programme:

10:00 Registration – Tea / Coffee & time to visit our retailers

10:20 Official welcome & BAA business – BAA President, Mrs Hazel McGee

10:30 **Dr Dirk Froebrich – "Hunting for Eruptive Young Stellar Objects"**

11:30 Mr Roger Pickard – "More Pro-Am Projects"

12:30 Mr Drew Wagar – AAS Chairman "The past, present, future of the Ashford Astronomy Society"

13:00 Lunch & time to visit our retailers and do some solar observing (weather permitting)

14:30 Dr Anthony Cook – Lunar Citizen Science

15:05 Prof Bill Leatherbarrow - "An introduction to Quick Map: a resource for lunar observers"

15:20 Mr Barry FitzGerald – "Amateur Astrogeology using LRO and other digital resources"

- 16:00 Tea & time to visit our retailers
- 16:30 Miss Alice Sheppard "When the Universe came to the people"
- 17:40 Close

Scroll down:-

Hunting Outbursting Young Stars with the Centre of Astrophysics and Planetary Sciences (HOYS-CAPS)

But you can't do this visually!

It has to be done either with a CCD or a DSLR camera

Most of the CCD Photometry that I do has to be carefully "reduced" to get a meaningful result.

This means using powerful software, in my case, called **"Astronomical Image Processing for Windows"** or **AIP4WIN** for short.

GP CVn 2016 April 27/28

However, if I'm taking images of these HOYS-CAPS stars I don't have to do that and so it's much easier.

All that is necessary is to do the usual dark frame and flat field subtraction.

The dark frame.

The flat field.

DSLR Photometry

Much the same is true with a DSLR camera

Except it's easier with a DSLR camera.

You also get a larger image covering a much larger area of sky, hence with more stars in it.

You then send them to Dirk and he does the rest!

More DSLR Photometry

The AAVSO DSLR Observing Manual

Target audience

Anyone with an interest in using DSLR cameras to measure the brightness of variable stars

Most of the book is written with the first time observer in mind

Plus high-level details for the more advanced

Download it for free! <u>http://www.aavso.org/sites/default/files/AAVSO_DSLR_Observing_Ma_nual_v1-2.pdf</u>

The AAVSO DSLR Observing Guide

But back to the main HOYS-CAPS Programme

Winter Target List:

Number	Cluster/Region Name	RA (J2000)	DEC (J2000)	Notes
001	NGC 1333	03 29 02	+31 20 54	
002	IC 348	03 44 34	+32 09 48	
006	Lambda - Ori Cluster	05 35 06	+09 56 00	
003	M42	05 35 17	-05 23 28	Orion Nebula
007	L 1641 N Cluster	05 36 19	-06 22 12	
005	Sigma - Ori Cluster	05 38 45	-02 36 00	
009	NGC 2068	05 46 46	+00 04 12	
008	NGC 2244	06 31 55	+04 56 30	Rosette Nebula
004	NGC 2264	06 40 58	+09 53 42	Christmas Tree Cluster

But back to the main HOYS-CAPS Programme

Summer Target List:

Number	Cluster/Region Name	RA (J2000)	DEC (J2000)	Notes	
101	Cygnus X	Anywhere from 74deg to 86deg Galactic Longitute and -3deg to +5deg Galactic Latitude (there are many young clusters in this area)			
112	MWSC 3274	20 11 13	+37 27 00	within the Cygnus X region	
111	MWSC 3301	20 17 47	+38 01 59	P Cyg Cluster, within the Cygnus X region	
110	Berkeley 86	20 20 12	+38 41 24	within the Cygnus X region	
118	IC 5070	20 51 00	+44 22 00	Pelican Nebula	
117	NGC 7000	20 58 47	+44 19 48	Large 2.5deg field around North America Nebula	
115	IC 1396 A	21 36 35	+57 30 36	Elephant Trunk Nebula in IC 1396	
113	IC 1396	21 39 00	+57 29 24	Large 2.5deg field around central star	
114	IC 1396 N	21 40 42	+58 16 06	in IC 1396	
116	NGC 7129	21 42 56	+66 06 12		
119	IC 5146	21 53 29	+47 16 01	Cocoon Nebula	

Hunting for Eruptive Young Stellar Objects

Dirk Froebrich

CENTRE FOR ASTROPHYSICS AND PLANETARY SCIENCE (CAPS)

National Optical Astronomy Observatory: NGC 7129

YSO variability/outbursts

Getting started

Targets:

To start off, limited to a small number of target clusters.

Four young clusters visible in winter.

One large star forming area for the summer.

Centre your images as close as possible on the provided coordinates.

More clusters in the future.

Observing Strategy:

Any image is useful and much appreciated.

The field of view, filter used and integration times do not matter.

Concentrate efforts on a small number of targets but with longer exposures.

Images can be taken at any time, ideally one every few weeks, but even a single image is helpful. Aim is to find highly variable or outbursting objects

Hence no particularly requirements for the image quality.

But to increase the usefulness and accuracy of the measurements, all images should be subject to a dark and flatfield correction.

http://www.britastro.org/vss/froebrich.htm

Some Results:

OUIDE 9.1 Home address 15 Apr 2016 TR 51-51 UTC

- 0 ×

0000E 9.1 Home address 15 Apr 2016 19:51-31 UTC

- 0 ×

GUIDE 9.1 Home address 15 Apr 2016 19:51-51 UTC

- 0 ×

UDE 11 Home address 15 Apr 2016 19:51-51 UTC

0

BUIDE 9.1 Home address 15 Apr 2016 19:51-51 UTC

0

×

You may not have thought of making variable star observations yet?

Please give it some serious thought.

There is an urgent call for very many more observations to support the work of the professional community.

They can be Visual, CCD or DSLR.

Thank You

Any questions?