Table of contents

 

Index to observations received from ARPS members

 

Observations received FROM ARPS MEMBERS

 

November and December 2009

 

Astrometry

 

Peter Birtwhistle

 

31 October 2009

 

Apollo 2009 TM8 made a very close approach to the Earth early on Oct. 17th about 48 hours after discovery by the Catalina Sky Survey. It was followed from Great Shefford from soon after sunset on Oct. 16th when it was moving at an apparent speed of 180"/min, through to 04:20 UT the next morning by which time it had accelerated to 285"/min. It reached its closest to Earth at 03:37 UT at a distance of 0.9 LD. The brightness stayed fairly constant, around mag. +17.5 all night, the decreasing distance from Earth being offset by increasing phase angle but the large increase in apparent speed made it a more difficult target as the night wore on.

 

Another newly discovered Apollo, 2009 UD passed Earth at 2 LD on Oct. 20 and was observed on the morning of Oct. 17th for 2 hours and again for 3 hours the next morning when it was at about 3 LD and mag +17.0. Over 1,000 images were obtained in those 5 hours and allowed the determination that this ~15 metre diameter object rotates very fast with a period of 83.7 seconds with an amplitude of about 0.7 magnitudes (see preliminary lightcurve).

 

2009 UV18 was an interesting LINEAR discovery from Oct. 22, relatively bright at mag. +18 and unusually large for a new discovery, estimated at over 2 km diameter. With a low inclination and the Earth approaching the ascending node of the orbit the size of the orbit was initially rather indeterminate and attempts at trying to identify it with a known minor planet failed, even though it ought to have been relatively bright in earlier apparitions. Then, on Oct. 29, Rob Matson, well known for precovery work with online image databases managed to find it on old NEAT images from Jan 2004, fortunately only 2.5° from the predicted place, even though the uncertainty was estimated at up to 90°.

The orbit of 2009 UV18 is similar to a Jupiter family comet and although it appeared stellar in images taken on Oct.23 and Oct. 26th it is probably worth keeping an eye on as it approaches perihelion this January in the morning sky. The last favourable return appears to have been in May 1993 when it should have reached mag. +16 and before that spring 1976 at mag +17.

 

The LCROSS mission was followed one final time on the night of Oct 8/9th. The spacecraft was only 6.4° from the gibbous Moon and internal reflections in the telescope made it a difficult target. Unfortunately the sky clouded over before the LCROSS shepherding spacecraft separated from the Centaur at 02:50 UT, the last images obtained that show LCROSS were taken at 01:56 UT but were so light polluted they could not be measured. The image of LCROSS was taken about an hour earlier, before the glare from the Moon became too strong, less than 11 hours before impact with the Moon.

 

What initially appeared to be a Near Earth Asteroid discovery was reported by the Catalina Sky Survey on Oct 26 and received their temporary designation 9U01FF6. It was 19th magnitude and moving at 10"/min but was already closer to Earth than the Moon. After follow-up from other observatories that same day it was found to be in a very unusual 31.5 day period, highly eccentric geocentric orbit, taking it to within 82,000 km of Earth (0.2 Lunar Distances) at perigee and out to 761,000 km (2.0 LD) at apogee. With an absolute magnitude of +30.9 it would only be 1-2 metres in diameter if it were a natural object, but smaller if artificial (with a higher albedo assumed). Further observations were made from Great Shefford on the evening of Oct. 27th and the last positions reported this perigee came from the OAM Observatory at La Sagra in Spain early on Oct. 28th.

 

9U01FF6 is fainter than mag. +21 for most of its orbit but will next be at perigee around Nov. 28th and should reach +16th magnitude but moving as fast as 250"-500"/min on the evening of Nov. 27th. Hopefully it will be recovered in the days leasding up to that but observability is probably limited at most to only 2-4 nights each perigee. It is likely to be an unusual artificial satellite but further observations at the end of November are encouraged.

 

6 December 2009

 

Although many nights in November had interruptions from cloud, observing time was logged on 18 nights and there were plenty of   Near Earth Objects to be followed that had been discovered during the month by the surveys.

Apollo 2009 VX had been discovered on Nov. 9th by the Catalina Sky Survey (CSS) as a 19th mag. object but had brightened to 17th mag. by the time it was picked up from Great Shefford early on the morning of Nov 12th, moving at 150"/min. It was then at 2.8 Lunar Distances (LD) and would pass at 2.59 LD at 13h UT the same day.

Another relatively bright new discovery was Apollo 2009 VZ and although it didn't get any closer than 15 LD it remained above 17th magnitude for 12 nights, I recorded it at 15th mag. on Nov. 12 & 14th. 2009 VZ was intrinsically about 5 magnitudes brighter than 2009 VX, which translates to 2009 VZ having a diameter about ten-times larger than 2009 VX (approx. 300 meters vs. 30 meters), assuming similar albedos for the two objects.

2009 WJ6 was another CSS discovery from Nov 19th and was followed from Great Shefford later that same day. By then it was already about mag. +17.0, at 2.1 LD and moving at 58"/min. It reached its closest to Earth at 11am UT the next day at 0.46 LD and was reported from the Westfield site of the Astronomical Research Observatory, Illinois three hours before perigee, at a distance of 0.82 LD.

One other close approach Apollo object was 2009 WV51. Discovered at 7am on Nov 23 by the CSS it was due to pass at just 0.39 LD the next day. I picked it up on the evening of Nov 23 at 17th magnitude when it was at a distance of 2.8 LD and moving at 'just' 22"/min. Watching individual images download it was easy to see it rising and falling in brightness by approximately 1 magnitude in just a few minutes, though the lightcurve has yet to be reduced. It was last reported from the Magdalena Ridge Observatory, New Mexico on Nov. 24 at 05:43 UT with the 2.4-m reflector, at a range of about 1.8 LD. It went unobserved from Great Shefford that night at its closest approach due to bad weather, but would have been 14th magnitude and moving at over 1,000"/min in the early evening of Nov. 24.

The probable artificial satellite 9U01FF6 mentioned last month in TA Vol 46 No 547 p184 (2009) was due back at perigee early on Nov. 28 after being followed for only 44 hours by 7 observatories at the end of October. I started searching for it on the evening of Nov 23 but given a likely positional uncertainty of up to 1°, the waxing Moon only about 30° to the south and the predicted mag. being +21.2 I was not expecting much success. However, it was picked up only 5' from the predicted position and ranging in magnitude from +20.5 up to +18.9, the standard asteroid magnitude formula obviously not providing a good fit for this object! Further positions obtained on three subsequent nights allowed the effect of Solar Radiation Pressure (SRP) to be determined using FindOrb using all the available observations (26 October - 27 November 2009). SRP effectively pushes an object away from the Sun and the smaller the mass and larger the surface area of the object exposed to the Sun, the larger the discrepancy from Newtonian motion may be observed. Without taking into account SRP the RMS residual for 78 positions over the two apparitions is a very unsatisfactory 16", but taking into account SRP this drops to 0.8". The value of SRP (or Area/Mass Ratio) determined was 0.011 m2/kg which is similar to those determined using FindOrb for other distant artificial satellites, e.g.

LCROSS (incl. Centaur)  size 14.5m x 4.7m, mass ~3,200kg, SRP = 0.015 m2/kg
IMP8                      size 1.4m x 1.6m, mass 371kg, SRP = 0.010 m2/kg
ASTRON (1983-020A)      size 6m long, mass 3250kg, SRP = 0.008 m2/kg

and is 10 times larger than the 0.0011 m2/kg value derived for 2006 RH120 (=6R10DB9), the tiny (natural) minor planet that was temporarily trapped in Earth orbit during 2006-2007. All this points to 9U01FF6 being man-made and from a posting on the SeeSat-L (Visual Satellite Observers) mailing list here http://www.satobs.org/seesat/Oct-2009/0176.html it is suggested that 9U01FF6 is very likely to be from a lunar transfer mission of some kind, but the perturbations on the orbit make identification of the specific launch very difficult. It is noted that some of the Agena rockets for the Ranger missions of the 1960s were in very similar orbits.

 

--------------- Artificial satellites ------------------------------------------

 

Planck        C2009 11 09.01262 03 18 51.42 +27 27 37.8          17.9 R      J95

Planck        C2009 11 09.01847 03 18 51.00 +27 27 46.0          18.1 R      J95

Planck        C2009 11 09.02430 03 18 50.59 +27 27 53.8          18.1 R      J95

 

9O0DC57       C2009 11 08.79171600 33 29.30 +07 55 40.5          15.2 R      J95 = 9O0DC57

9O0DC57       C2009 11 08.79305600 33 34.98 +07 57 34.2          15.1 R      J95

9O0DC57       C2009 11 08.79429200 33 40.22 +07 59 19.2          15.2 R      J95

9O0DC57       C2009 11 08.79549700 33 45.30 +08 01 01.0          15.2 R      J95

9O0DC57       C2009 11 08.79660900 33 50.00 +08 02 35.6          15.2 R      J95

9O0DC57       C2009 11 26.85669500 28 18.34 +08 08 25.1          15.6 R      J95

9O0DC57       C2009 11 26.85749500 28 21.30 +08 09 30.3          15.7 R      J95

9O0DC57       C2009 11 26.85827800 28 24.22 +08 10 34.3          15.8 R      J95

 

9U01FF6       C2009 11 23.82062 22 02 31.67 +20 51 28.8          19.5 R      J95 = 9U01FF6 = (old Lunar transfer mission?) P=32.9d q=76k km, Q=793k km

9U01FF6       C2009 11 23.82396 22 02 33.90 +20 51 16.9          18.9 R      J95

9U01FF6       C2009 11 23.82677 22 02 35.66 +20 51 06.9          19.3 R      J95

9U01FF6       C2009 11 23.85048 22 02 52.55 +20 49 32.0          20.5 R      J95

9U01FF6       C2009 11 25.79926 23 07 43.16 +18 25 32.6          19.2 R      J95

9U01FF6       C2009 11 25.80166 23 07 47.36 +18 25 09.0          18.9 R      J95

9U01FF6       C2009 11 25.80437 23 07 52.11 +18 24 41.9          19.2 R      J95

9U01FF6       C2009 11 25.88760 23 10 28.63 +18 08 30.9          19.2 R      J95

9U01FF6       C2009 11 25.89210 23 10 37.94 +18 07 29.6          19.3 R      J95

9U01FF6       C2009 11 25.89602 23 10 46.15 +18 06 37.7          18.4 R      J95

9U01FF6       C2009 11 25.89859 23 10 51.56 +18 06 02.6          19.3 R      J95

9U01FF6       C2009 11 26.81311200 16 57.94 +13 37 32.9          18.2 R      J95

9U01FF6       C2009 11 26.81611600 17 10.97 +13 36 06.7          18.5 R      J95

9U01FF6       C2009 11 26.81932900 17 24.78 +13 34 33.2          18.3 R      J95

9U01FF6       C2009 11 26.82413400 17 45.58 +13 32 11.5          18.1 R      J95

9U01FF6       C2009 11 26.82745800 18 00.07 +13 30 33.1          18.5 R      J95

9U01FF6       C2009 11 26.83023000 18 12.14 +13 29 09.5          18.3 R      J95

9U01FF6       C2009 11 27.87060604 07 47.10 -10 35 31.1          16.3 R      J95

9U01FF6       C2009 11 27.88909304 16 28.71 -11 35 43.1          15.8 R      J95

9U01FF6       C2009 11 27.88993204 16 52.84 -11 38 29.5          16.2 R      J95

9U01FF6       C2009 11 27.90081404 22 10.34 -12 14 39.3          16.7 R      J95

9U01FF6       C2009 11 27.90165404 22 35.13 -12 17 28.3          16.7 R      J95

9U01FF6       C2009 11 27.90447704 23 58.91 -12 26 57.1          16.3 R      J95

9U01FF6       C2009 11 27.91243904 27 58.01 -12 53 48.8          16.0 R      J95

9U01FF6       C2009 11 27.91847604 31 02.17 -13 14 19.4          16.3 R      J95

 

--------------- Minor Planets --------------------------------------------------

 

05893         C2009 11 07.91087 00 50 22.31 -05 32 30.3                      J95 = MBA

05893         C2009 11 07.91661 00 50 22.15 -05 32 31.6          17.6 R      J95

05893         C2009 11 07.92568 00 50 21.89 -05 32 33.8                      J95

05893         C2009 11 07.93074 00 50 21.75 -05 32 35.0          17.7 R      J95

 

21168         C2009 11 06.89928 02 37 35.83 +09 09 19.1                      J95 = MBA

21168         C2009 11 06.90962 02 37 35.16 +09 09 16.7                      J95

21168         C2009 11 06.91823 02 37 34.59 +09 09 14.5          18.1 R      J95

 

23698         C2009 11 14.88969 02 46 00.38 +18 21 24.4                      J95 = MBA

23698         C2009 11 14.91785 02 45 59.03 +18 21 17.6                      J95

23698         C2009 11 14.92211 02 45 58.81 +18 21 16.4                      J95

23698         C2009 11 14.92638 02 45 58.58 +18 21 15.6          18.8 R      J95

 

29239         C2009 11 08.07266 03 10 34.45 +03 37 22.9                      J95 = MBA

29239         C2009 11 08.07613 03 10 34.24 +03 37 22.2                      J95

29239         C2009 11 08.07956 03 10 34.04 +03 37 21.3          18.3 R      J95

 

41224         C2009 11 14.88969 02 46 16.94 +18 35 59.3                      J95 = MBA

41224         C2009 11 14.91785 02 46 15.47 +18 35 51.6                      J95

41224         C2009 11 14.92211 02 46 15.24 +18 35 50.4                      J95

41224         C2009 11 14.92638 02 46 15.02 +18 35 49.2          17.1 R      J95

 

51992         C2009 11 16.83756 02 43 37.88 +18 10 14.0                      J95 = MBA

51992         C2009 11 16.87653 02 43 35.38 +18 10 18.3                      J95

51992         C2009 11 16.90210 02 43 33.74 +18 10 21.0                      J95

51992         C2009 11 16.91193 02 43 33.10 +18 10 22.0          16.0 R      J95

 

58673         C2009 11 06.88196 01 28 15.05 -07 40 38.2                      J95 = MBA

58673         C2009 11 06.88608 01 28 14.86 -07 40 37.8                      J95

58673         C2009 11 06.89021 01 28 14.65 -07 40 37.3          17.9 R      J95

 

66696         C2009 11 20.95288 02 41 22.55 +17 04 46.7                      J95 = MBA

66696         C2009 11 20.96059 02 41 22.15 +17 04 45.3                      J95

66696         C2009 11 20.96748 02 41 21.84 +17 04 43.3          19.4 R      J95

 

80168         C2009 11 06.89928 02 37 26.96 +09 06 55.5                      J95 = MBA

80168         C2009 11 06.90962 02 37 26.39 +09 06 50.2                      J95

80168         C2009 11 06.91823 02 37 25.92 +09 06 45.7          17.6 R      J95

 

A1135         C2009 11 17.86075 03 23 16.46 +15 18 52.8                      J95 = MBA

A1135         C2009 11 17.87368 03 23 15.72 +15 18 47.3          17.6 R      J95

 

A1262         C2009 11 16.83756 02 43 33.58 +17 55 21.9                      J95 = MBA

A1262         C2009 11 16.87653 02 43 30.98 +17 55 19.2          18.3 R      J95

 

C1250         C2009 11 12.23257 06 10 38.18 +34 55 52.0                      J95 = MBA

C1250         C2009 11 12.23656 06 10 38.13 +34 55 52.7                      J95

C1250         C2009 11 12.24053 06 10 38.09 +34 55 53.9          18.8 R      J95

 

C5003         C2009 11 25.94527 04 28 06.56 +10 37 36.4                      J95 = MBA

C5003         C2009 11 25.95672 04 28 05.83 +10 37 35.4          18.9 R      J95

 

E8291         C2009 11 08.91917 02 35 41.21 +15 41 18.8                      J95 = MBA

E8291         C2009 11 08.92300 02 35 41.01 +15 41 17.2                      J95

E8291         C2009 11 08.92689 02 35 40.67 +15 41 14.7          19.3 R      J95

 

E8502         C2009 11 25.87262 04 36 01.31 +14 18 08.2                      J95 = MBA

E8502         C2009 11 25.87702 04 36 01.02 +14 18 07.7                      J95

E8502         C2009 11 25.88124 04 36 00.78 +14 18 07.1          18.9 R      J95

 

E8638         C2009 11 17.81892 02 53 52.52 +15 31 47.5                      J95 = MBA

E8638         C2009 11 17.83053 02 53 51.83 +15 31 46.1                      J95

E8638         C2009 11 17.83647 02 53 51.50 +15 31 45.3                      J95

E8638         C2009 11 17.84261 02 53 51.11 +15 31 44.1          19.1 R      J95

 

F4414         C2009 11 06.89928 02 36 47.80 +09 10 45.4                      J95 = MBA

F4414         C2009 11 06.90962 02 36 47.16 +09 10 43.3                      J95

F4414         C2009 11 06.91823 02 36 46.65 +09 10 41.6          18.8 R      J95

F4414         C2009 11 07.79992 02 35 55.00 +09 07 47.6                      J95

F4414         C2009 11 07.80385 02 35 54.77 +09 07 47.2                      J95

F4414         C2009 11 07.80776 02 35 54.52 +09 07 46.2          18.4 R      J95

F4414         C2009 11 08.85043 02 34 53.46 +09 04 27.7                      J95

F4414         C2009 11 08.85491 02 34 53.12 +09 04 26.4          18.5 R      J95

 

I3313         C2009 11 08.07266 03 09 58.06 +03 44 33.7                      J95 = MBS

I3313         C2009 11 08.07613 03 09 57.70 +03 44 35.3                      J95

I3313         C2009 11 08.07956 03 09 57.38 +03 44 37.0          18.5 R      J95

 

I3896         C2009 11 17.81892 02 54 29.44 +15 30 05.9                      J95 = MBA

I3896         C2009 11 17.83647 02 54 28.31 +15 30 04.3                      J95

I3896         C2009 11 17.84261 02 54 27.90 +15 30 03.1          19.7 R      J95

 

M3176         C2009 11 17.86075 03 22 36.78 +15 15 07.1                      J95 = MBA

M3176         C2009 11 17.87368 03 22 36.00 +15 15 03.2          19.3 R      J95

 

M4297         C2009 11 20.95288 02 40 25.34 +17 03 52.0                      J95 = MBA

M4297         C2009 11 20.96059 02 40 24.88 +17 03 51.4                      J95

M4297         C2009 11 20.96748 02 40 24.60 +17 03 51.4          19.8 R      J95

 

     K00Y27Z WC2009 11 26.17424 12 42 25.86 +23 39 29.6                      J95 = 9W1A479 = Mars-crossing Asteroid 

     K00Y27Z SC2009 11 26.17616 12 42 26.13 +23 39 28.7          19.3 R      J95

 

     K02V92R  C2009 11 06.89928 02 37 16.39 +08 59 24.4                      J95 = MBA

     K02V92R  C2009 11 06.90962 02 37 15.83 +08 59 22.2                      J95

     K02V92R  C2009 11 06.91823 02 37 15.37 +08 59 19.6          19.1 R      J95

 

     K04T10M  C2009 11 14.88969 02 45 44.10 +18 24 27.1                      J95 = MBA

     K04T10M  C2009 11 14.91785 02 45 42.51 +18 24 23.5                      J95

     K04T10M  C2009 11 14.92211 02 45 42.27 +18 24 22.7                      J95

     K04T10M  C2009 11 14.92638 02 45 42.03 +18 24 22.2          19.4 R      J95

 

     K04V54D  C2009 11 12.11679 06 08 13.89 +35 28 33.0                      J95 = MBA

     K04V54D  C2009 11 12.12610 06 08 13.61 +35 28 32.3                      J95

     K04V54D  C2009 11 12.13556 06 08 13.28 +35 28 33.6          20.4 R      J95

 

     K04V72O  C2009 11 17.81892 02 54 12.41 +15 26 46.0                      J95 = MBA

     K04V72O  C2009 11 17.82472 02 54 12.08 +15 26 43.5                      J95

     K04V72O  C2009 11 17.83053 02 54 11.92 +15 26 44.6                      J95

     K04V72O  C2009 11 17.83647 02 54 11.60 +15 26 42.2                      J95

     K04V72O  C2009 11 17.84261 02 54 11.26 +15 26 42.9          19.6 R      J95

 

     K05SH0C  C2009 11 25.87262 04 36 13.42 +14 13 49.5                      J95 = MBA

     K05SH0C  C2009 11 25.87702 04 36 13.15 +14 13 47.3                      J95

     K05SH0C  C2009 11 25.88124 04 36 12.92 +14 13 45.7          18.3 R      J95

 

     K05U81J  C2009 11 08.93768 02 51 07.14 +19 48 07.6                      J95 = MBA

     K05U81J  C2009 11 08.95283 02 51 06.25 +19 48 00.0          18.9 R      J95

     K05U81J  C2009 11 09.00052 02 51 03.58 +19 47 35.4                      J95

     K05U81J  C2009 11 09.00480 02 51 03.32 +19 47 33.1          19.1 R      J95

 

     K07V92J  C2009 11 08.91917 02 35 40.74 +15 42 20.4                      J95 = 9V99DAB = Mars-crossing Asteroid 

     K07V92J  C2009 11 08.92300 02 35 39.93 +15 42 33.5                      J95

     K07V92J  C2009 11 08.92689 02 35 39.22 +15 42 45.2          19.7 R      J95

 

     K09T12K  C2009 11 05.94636 00 47 45.82 +18 55 52.1                      J95 = Apollo

     K09T12K  C2009 11 05.97820 00 47 32.78 +18 54 51.9                      J95

     K09T12K  C2009 11 05.99023 00 47 27.85 +18 54 29.2                      J95

     K09T12K  C2009 11 05.99812 00 47 24.62 +18 54 14.6          17.5 R      J95

 

     K09U14K  C2009 11 02.04315607 25 36.07 +45 43 01.9                      J95 = Apollo

     K09U14K  C2009 11 02.04968707 26 03.13 +45 42 42.0                      J95

     K09U14K  C2009 11 02.05864107 26 40.16 +45 42 13.7          18.7 R      J95

 

     K09U19Y  C2009 11 01.98833 01 29 13.02 +47 42 57.4                      J95 = Apollo

     K09U19Y  C2009 11 01.99167 01 29 09.32 +47 43 40.0                      J95

     K09U19Y  C2009 11 01.99522 01 29 05.38 +47 44 24.9          16.6 R      J95

     K09U19Y  C2009 11 05.92957 00 19 05.54 +58 20 04.9                      J95

     K09U19Y  C2009 11 05.93288 00 19 01.52 +58 20 26.4                      J95

     K09U19Y  C2009 11 05.93810 00 18 55.16 +58 21 00.3          17.5 R      J95

 

     K09U20K  C2009 11 06.88196 01 27 53.24 -07 34 34.5                      J95 = Apollo

     K09U20K  C2009 11 06.88608 01 27 50.68 -07 35 45.5                      J95

     K09U20K  C2009 11 06.89021 01 27 48.02 -07 36 58.5          18.8 R      J95

 

     K09U31C  C2009 11 17.81892 02 53 47.73 +15 27 31.7                      J95 = MBA

     K09U31C  C2009 11 17.82472 02 53 47.46 +15 27 30.2                      J95

     K09U31C  C2009 11 17.83053 02 53 47.28 +15 27 27.4                      J95

     K09U31C  C2009 11 17.83647 02 53 46.95 +15 27 25.6                      J95

     K09U31C  C2009 11 17.84261 02 53 46.71 +15 27 22.9          18.8 R      J95

 

     K09U94F  C2009 11 06.89928 02 36 55.66 +09 02 37.2                      J95 = MBA

     K09U94F  C2009 11 06.90962 02 36 55.12 +09 02 33.0                      J95

     K09U94F  C2009 11 06.91823 02 36 54.76 +09 02 29.3          19.5 R      J95

 

     K09V00B  C2009 11 06.85735 00 32 36.23 +32 23 17.4                      J95 = 9V04E3A = Mars-crossing Asteroid 

     K09V00B  C2009 11 06.86514 00 32 35.52 +32 23 17.1                      J95

     K09V00B  C2009 11 06.87285 00 32 34.85 +32 23 16.8          19.9 R      J95

 

     K09V00C  C2009 11 06.89928 02 37 13.27 +09 00 24.2                      J95 = GS9B6A = MBA = Great Shefford Discovery

     K09V00C  C2009 11 06.90962 02 37 12.39 +09 00 27.1                      J95

     K09V00C  C2009 11 06.91823 02 37 11.67 +09 00 31.1          19.1 R      J95

     K09V00C  C2009 11 07.80776 02 35 58.84 +09 05 55.1                      J95

     K09V00C  C2009 11 07.83085 02 35 56.82 +09 06 04.2                      J95

     K09V00C  C2009 11 07.83399 02 35 56.58 +09 06 05.4          18.7 R      J95

     K09V00C  C2009 11 08.85043 02 34 33.88 +09 12 19.6                      J95

     K09V00C  C2009 11 08.85491 02 34 33.48 +09 12 20.6          19.6 R      J95

 

     K09V00P  C2009 11 07.95597 03 11 34.28 +02 58 50.8                      J95 = BR01955 = Apollo

     K09V00P  C2009 11 07.95912 03 11 32.67 +02 59 44.6                      J95

     K09V00P  C2009 11 07.96225 03 11 31.08 +03 00 37.8          18.0 R      J95

     K09V00P  C2009 11 08.07266 03 10 34.91 +03 31 48.0                      J95

     K09V00P  C2009 11 08.07613 03 10 33.16 +03 32 46.4                      J95

     K09V00P  C2009 11 08.07956 03 10 31.42 +03 33 43.9          17.9 R      J95

     K09V00P  C2009 11 08.96352 03 03 42.67 +07 33 13.9                      J95

     K09V00P  C2009 11 08.96867 03 03 40.21 +07 34 34.2                      J95

     K09V00P  C2009 11 08.97367 03 03 37.82 +07 35 52.4          17.9 R      J95

 

     K09V00Q  C2009 11 08.85931003 10 54.65 +28 00 36.3                      J95 = 9V06067 = Apollo

     K09V00Q  C2009 11 08.86147703 10 59.98 +28 01 30.4                      J95

     K09V00Q  C2009 11 08.86360203 11 05.17 +28 02 24.2          18.6 R      J95

 

     K09V00R  C2009 11 08.93768 02 51 07.08 +19 41 28.1                      J95 = 9V99C88 = Apollo

     K09V00R  C2009 11 08.94931 02 51 14.73 +19 45 04.3                      J95

     K09V00R  C2009 11 08.95635 02 51 19.34 +19 47 17.5          20.3 R      J95

 

     K09V00S  C2009 11 08.87106 02 55 57.33 +20 44 19.6                      J95 = 9V0632A = Apollo

     K09V00S  C2009 11 08.87366 02 55 57.84 +20 43 37.4          19.4 R      J95

 

     K09V00X  C2009 11 12.05166901 45 55.50 +53 27 16.5                      J95 = Apollo

     K09V00X  C2009 11 12.05257001 45 53.70 +53 30 03.1                      J95

     K09V00X  C2009 11 12.05346301 45 51.85 +53 32 48.1          17.1 R      J95

     K09V00X  C2009 11 12.06931501 45 18.87 +54 22 00.5                      J95

     K09V00X  C2009 11 12.07046501 45 16.42 +54 25 36.8                      J95

     K09V00X  C2009 11 12.07154401 45 14.16 +54 28 59.2          17.1 R      J95

     K09V00X  C2009 11 12.21743201 38 56.60 +62 37 18.0          17.7 R      J95

     K09V00X  C2009 11 12.22063701 38 46.32 +62 48 43.8          17.5 R      J95

     K09V00X  C2009 11 12.22391301 38 35.78 +63 00 26.6          18.0 R      J95

     K09V00X  C2009 11 12.22763701 38 23.61 +63 13 47.5          17.1 R      J95

 

     K09V00Z  C2009 11 12.07569 06 07 09.05 +35 40 33.5                      J95 = Apollo

     K09V00Z  C2009 11 12.07925 06 07 13.05 +35 39 36.0                      J95

     K09V00Z  C2009 11 12.08347 06 07 17.80 +35 38 27.8          15.7 R      J95

     K09V00Z  C2009 11 12.23257 06 10 06.14 +34 57 11.0                      J95

     K09V00Z  C2009 11 12.23656 06 10 10.69 +34 56 03.3                      J95

     K09V00Z  C2009 11 12.24053 06 10 15.22 +34 54 55.7          15.6 R      J95

     K09V00Z  C2009 11 14.95375 07 03 48.37 +19 30 08.2                      J95

     K09V00Z  C2009 11 14.96004 07 03 55.43 +19 27 41.3                      J95

     K09V00Z  C2009 11 14.96680 07 04 03.01 +19 25 03.3          15.7 R      J95

 

     K09V42J  C2009 11 08.93768 02 50 57.93 +19 44 24.1                      J95 = GS9B8A = MBA = Great Shefford Discovery

     K09V42J  C2009 11 08.95283 02 50 57.04 +19 44 12.2          20.1 R      J95

     K09V42J  C2009 11 09.00052 02 50 54.35 +19 43 36.6                      J95

     K09V42J  C2009 11 09.00480 02 50 54.13 +19 43 32.5          20.0 R      J95

     K09V42J  C2009 11 14.88969 02 45 44.23 +18 28 15.3          19.9 R      J95

     K09V42J  C2009 11 14.91785 02 45 42.78 +18 27 54.3                      J95

     K09V42J  C2009 11 14.92211 02 45 42.58 +18 27 50.9                      J95

     K09V42J  C2009 11 14.92638 02 45 42.32 +18 27 47.0          20.1 R      J95

     K09V42J  C2009 11 16.83756 02 44 06.96 +18 03 30.7                      J95

     K09V42J  C2009 11 16.90210 02 44 03.62 +18 02 41.6                      J95

     K09V42J  C2009 11 16.91193 02 44 03.24 +18 02 33.5          20.1 R      J95

     K09V42J  C2009 11 20.95288 02 40 53.83 +17 12 11.1                      J95

     K09V42J  C2009 11 20.96059 02 40 53.48 +17 12 05.5                      J95

     K09V42J  C2009 11 20.96748 02 40 53.22 +17 11 59.3          20.0 R      J95

 

     K09V44P  C2009 11 14.93097 03 43 45.37 +02 16 31.2                      J95 = BR12445 = Apollo

     K09V44P  C2009 11 14.93213 03 43 47.66 +02 15 35.5                      J95

     K09V44P  C2009 11 14.93330 03 43 49.81 +02 14 40.6                      J95

     K09V44P  C2009 11 14.93518 03 43 53.26 +02 13 11.3          18.7 R      J95

 

     K09W00E  C2009 11 16.93508 02 17 50.65 +11 54 11.0                      J95 = 9WA2D1E = Apollo

     K09W00E  C2009 11 16.95206 02 17 43.48 +11 55 54.8          20.2 R      J95

 

     K09W01K  C2009 11 17.86075 03 22 38.30 +15 19 20.4                      J95 = 9WA5DB1 = Apollo

     K09W01K  C2009 11 17.87368 03 22 51.73 +15 18 37.1          20.3 R      J95

 

     K09W06J  C2009 11 19.89658503 33 23.00 +37 57 17.9          16.9 R      J95 = Apollo

     K09W06J  C2009 11 19.90060103 33 25.83 +38 02 02.9          17.1 R      J95

     K09W06J  C2009 11 19.91084303 33 33.04 +38 14 28.9          17.2 R      J95

     K09W06J  C2009 11 19.91215603 33 34.03 +38 16 05.4          17.2 R      J95

     K09W06J  C2009 11 19.92187703 33 40.97 +38 28 18.6          17.1 R      J95

     K09W06J  C2009 11 19.92382103 33 42.40 +38 30 48.1          17.0 R      J95

     K09W06J  C2009 11 19.94317703 33 56.93 +38 56 30.4          16.9 R      J95

     K09W06J  C2009 11 19.94484003 33 58.23 +38 58 47.5          17.0 R      J95

     K09W06J  C2009 11 19.94822603 34 00.85 +39 03 29.1          17.0 R      J95

 

     K09W07Y  C2009 11 20.88145 04 10 14.52 +13 55 30.6                      J95 = Aten

     K09W07Y  C2009 11 20.88340 04 10 11.10 +13 55 26.2          18.0 R      J95

 

     K09W25O  C2009 11 24.04605 05 50 32.19 +50 52 34.4                      J95 = MBA

     K09W25O  C2009 11 24.04876 05 50 32.23 +50 52 36.3                      J95

     K09W25O  C2009 11 24.05145 05 50 32.30 +50 52 37.8          17.0 R      J95

 

     K09W25R  C2009 11 21.92861 02 56 35.53 +18 05 19.3                      J95 = BR48714 = Aten   Found 35' from nominal

     K09W25R  C2009 11 21.92975 02 56 35.19 +18 05 06.4                      J95

     K09W25R  C2009 11 21.93058 02 56 34.83 +18 04 56.6                      J95

     K09W25R  C2009 11 21.93335 02 56 33.83 +18 04 24.7          17.5 R      J95

     K09W25R  C2009 11 21.93657 02 56 32.68 +18 03 48.8          17.9 R      J95

     K09W25R  C2009 11 22.03141 02 55 59.05 +17 45 52.3                      J95

     K09W25R  C2009 11 22.03623 02 55 57.37 +17 44 57.8          18.0 R      J95

     K09W25R  C2009 11 22.04993 02 55 52.56 +17 42 23.0                      J95

     K09W25R  C2009 11 22.05231 02 55 51.74 +17 41 56.0          18.1 R      J95

 

     K09W25U  C2009 11 22.06875 07 16 01.73 +23 37 30.9                      J95 = BR48748 = Apollo

     K09W25U  C2009 11 22.07944 07 16 01.05 +23 39 23.9          19.3 R      J95

 

     K09W25V  C2009 11 23.80821 03 22 55.41 +27 00 44.2                      J95 = Apollo

     K09W25V  C2009 11 23.81068 03 22 54.91 +27 00 52.9                      J95

     K09W25V  C2009 11 23.81272 03 22 54.52 +27 01 00.5          17.9 R      J95

     K09W25V  C2009 11 27.92693 02 57 22.07 +34 45 12.5                      J95

     K09W25V  C2009 11 27.93322 02 57 16.21 +34 46 37.6                      J95

     K09W25V  C2009 11 27.93837 02 57 11.40 +34 47 47.3          16.8 R      J95

     K09W25V  C2009 11 27.95851 02 56 52.45 +34 52 20.2                      J95

     K09W25V  C2009 11 30.75375800 01 59.31 +58 39 47.6                      J95

     K09W25V  C2009 11 30.75633000 01 21.67 +58 41 34.8                      J95

     K09W25V  C2009 11 30.75883100 00 44.84 +58 43 18.6          15.7 R      J95

 

     K09W51V  C2009 11 23.87670604 34 32.24 +09 15 36.7          17.0 R      J95 = Apollo

     K09W51V  C2009 11 23.91884604 34 21.32 +09 36 38.2          16.7 R      J95

     K09W51V  C2009 11 23.92624604 34 19.07 +09 40 31.0          16.9 R      J95

     K09W51V  C2009 11 23.93397504 34 16.57 +09 44 37.9          17.1 R      J95

     K09W51V  C2009 11 23.93663704 34 15.69 +09 46 04.4          16.8 R      J95

 

     K09W52Q  C2009 11 25.81079803 49 27.23 +38 24 47.8          20.0 R      J95 = Apollo

     K09W52Q  C2009 11 25.81927603 49 52.56 +38 35 42.9          19.6 R      J95

     K09W52Q  C2009 11 25.82754403 50 17.50 +38 46 26.2          19.1 R      J95

     K09W52Q  C2009 11 25.83555303 50 41.86 +38 56 52.7          19.6 R      J95

 

     K09W54A  C2009 11 24.02475 06 23 37.55 +36 47 16.3          20.0 R      J95 = 9WB3213 = Apollo

     K09W54A  C2009 11 24.02966 06 23 38.55 +36 45 05.7                      J95

     K09W54A  C2009 11 24.03723 06 23 39.98 +36 41 46.3          20.5 R      J95

 

     K09WA5M  C2009 11 25.91439 06 00 33.58 +67 13 17.4          19.4 R      J95 = 9W1A135 = Aten

     K09WA5M  C2009 11 25.92059 06 00 28.65 +67 14 00.9                      J95

     K09WA5M  C2009 11 25.92947 06 00 21.51 +67 15 02.6          18.9 R      J95

 

     K09WA5N FC2009 11 25.94527 04 27 50.95 +10 30 24.1                      J95 = ts568 = Amor

     K09WA5N FC2009 11 25.95672 04 27 50.52 +10 30 46.9          20.6 R      J95

 

     K09WA5Q  C2009 11 26.06151 09 02 55.98 +22 40 19.3          19.1 R      J95 = MBA

     K09WA5Q  C2009 11 26.12708 09 03 00.05 +22 40 28.7          19.1 R      J95

     K09WA5Q  C2009 11 26.13580 09 03 00.59 +22 40 29.9          19.2 R      J95

 

     K09WA6D  C2009 11 26.03883 06 56 30.17 +49 30 29.6                      J95 = BR58854 = Apollo

     K09WA6D  C2009 11 26.04077 06 56 29.05 +49 30 27.4                      J95

     K09WA6D  C2009 11 26.04246 06 56 28.04 +49 30 25.6          17.8 R      J95

 

     K09WA6E  C2009 11 25.87377 04 36 35.23 +14 18 48.7          20.1 R      J95 = 9WB82DD = Apollo

     K09WA6E  C2009 11 25.88040 04 36 44.10 +14 20 01.1          20.6 R      J95

 

     GS9BQB   C2009 11 26.06151 09 03 00.28 +22 35 25.6                      J95 = GS9BQB = Great Shefford ONS = probable MBA

     GS9BQB   C2009 11 26.12708 09 03 02.25 +22 35 28.4                      J95

     GS9BQB   C2009 11 26.13580 09 03 02.73 +22 35 29.1          20.5 R      J95

 

     K09WA6G  C2009 11 26.14753 10 18 58.69 +36 22 26.3                      J95 = 9W1A345 = Apollo

     K09WA6G  C2009 11 26.14999 10 18 52.98 +36 21 50.5                      J95

     K09WA6G  C2009 11 26.16184 10 18 25.53 +36 18 56.2                      J95

     K09WA6G  C2009 11 26.16417 10 18 20.10 +36 18 22.0          18.7 R      J95

 

     K09WA6H  C2009 11 26.83621 00 40 03.59 +24 08 15.0                      J95 = 9W1A59D = Apollo

     K09WA6H  C2009 11 26.84171 00 40 08.92 +24 08 28.0                      J95

     K09WA6H  C2009 11 26.85225 00 40 19.12 +24 08 54.0          19.2 R      J95

 

     K09WA6J FC2009 11 26.86442 04 31 42.12 +15 47 44.3                      J95 = 9WB8802 = Apollo

     K09WA6J FC2009 11 26.86894 04 31 37.81 +15 47 59.8          19.7 R      J95

 

     K09WA6N  C2009 11 26.88041 06 06 30.61 +40 56 14.7                      J95 = 9WB9AC0 = Apollo

     K09WA6N  C2009 11 26.88349 06 06 33.40 +40 57 14.2                      J95

     K09WA6N  C2009 11 26.89150 06 06 40.66 +40 59 46.7          19.4 R      J95

 

Alan Cahill

 

COD J94

OBS A.E. Cahill

MEA A.E. Cahill

TEL 0.3-m f/4.0 Schmidt-Cassegrain + CCD

ACK MPCReport file updated 2009.10.28 21:18:11

AC2 alancahill@blueyonder.co.uk

COM 2000 LM  Amor

NET USNO-B1.0

54401         C2009 10 28.78438 23 36 32.58 +29 34 53.2          17.3 C      J94

54401         C2009 10 28.80933 23 36 34.07 +29 34 00.0          17.3 C      J94

54401         C2009 10 28.82175 23 36 34.77 +29 33 34.0          17.4 C      J94

A0045         C2009 10 28.77856 23 33 19.59 +30 02 45.8          16.3 C      J94

A0045         C2009 10 28.79067 23 33 18.81 +30 02 44.6          16.4 C      J94

A0045         C2009 10 28.80321 23 33 17.99 +30 02 43.3          16.3 C      J94

 

COD J94

OBS A.E. Cahill

MEA A.E. Cahill

TEL 0.3-m f/4.0 Schmidt-Cassegrain + CCD

ACK MPCReport file updated 2009.11.20 20:36:51

AC2 alancahill@blueyonder.co.uk

COM 2 Mars Crossers

NET USNO-B1.0

24806         C2009 11 20.77369 00 19 21.66 +15 02 34.7          17.2 C      J94

24806         C2009 11 20.79798 00 19 22.36 +15 02 39.4          17.1 C      J94

24806         C2009 11 20.81522 00 19 22.90 +15 02 41.5          17.3 C      J94

A0276         C2009 11 20.77995 00 25 05.80 +14 52 37.5          17.7 C      J94

A0276         C2009 11 20.80451 00 25 06.39 +14 52 04.6          17.5 C      J94

A0276         C2009 11 20.82239 00 25 06.81 +14 51 40.5          17.6 C      J94

 

COD J94

OBS A.E. Cahill

MEA A.E. Cahill

TEL 0.3-m f/4.0 Schmidt-Cassegrain + CCD

ACK MPCReport file updated 2009.11.24 00:16:39

AC2 alancahill@blueyonder.co.uk

COM 2 Apollo

NET USNO-B1.0

D8852         C2009 11 23.95972 03 30 05.06 +18 02 18.1          17.6 C      J94

D8852         C2009 11 23.98054 03 29 56.05 +18 04 06.8          16.7 C      J94

D8852         C2009 11 23.98550 03 29 53.81 +18 04 31.6          16.8 C      J94

 

John Fletcher

 

Eros 433. unusual

NEO 217807 0.1 au from home planet.

 

COD J93

OBS John Fletcher

MEA John Fletcher

TEL 0.25-m f/5.5 Schmidt-Cassegrain + CCD

ACK MPCReport file updated 2009.11.20 21:30:35

AC2 jfmto@blueyonder.co.uk

NET CMC-14

00433         C2009 11 20.87686 22 01 03.77 +03 57 36.4          12.7 V      J93

00433         C2009 11 20.87916 22 01 03.94 +03 57 37.2          12.7 V      J93

00433         C2009 11 20.88145 22 01 04.17 +03 57 37.7          12.7 V      J93

L7807         C2009 11 20.88770 04 08 14.45 +44 35 14.9          14.6 V      J93

L7807         C2009 11 20.89001 04 08 14.65 +44 35 27.9          14.5 V      J93

L7807         C2009 11 20.89231 04 08 14.76 +44 35 39.9          14.6 V      J93

 

433 Eros. Unusual

 

NEO’s

217807

159402

 

COD J93

OBS John Fletcher

MEA John Fletcher

TEL 0.25-m f/5.5 Schmidt-Cassegrain + CCD

ACK MPCReport file updated 2009.11.23 23:36:18

AC2 jfmto@blueyonder.co.uk

NET CMC-14

00433         C2009 11 23.93973 22 05 43.03 +04 10 14.9          12.7 V      J93

00433         C2009 11 23.94197 22 05 43.25 +04 10 15.5          12.7 V      J93

00433         C2009 11 23.94420 22 05 43.47 +04 10 16.0          12.7 V      J93

L7807         C2009 11 23.94883 04 12 56.81 +48 34 24.6          14.8 V      J93

L7807         C2009 11 23.94985 04 12 56.88 +48 34 29.0          14.7 V      J93

L7807         C2009 11 23.95087 04 12 56.94 +48 34 33.2          14.8 V      J93

NET NOMAD

F9402         C2009 11 23.97711 10 41 30.28 +64 57 42.3          15.5 V      J93

F9402         C2009 11 23.97905 10 41 29.93 +64 57 38.6          15.5 V      J93

F9402         C2009 11 23.98100 10 41 29.60 +64 57 34.6          15.4 V      J93

 

Richard Miles

 

Note that asteroid 07102 is named NeilBone (RD)

 

COD F65

OBS R. Miles

MEA R. Miles

TEL 2.0-m f/10.0 Ritchey-Chretien + CCD

ACK MPCReport file updated 2009.11.29 21:01:30

AC2 rmiles@baa.u-net.com

NET USNO-B1.0

     007102   C2009 11 26.50232 08 32 52.30 +21 15 20.6          18.1 V

F65

     007102   C2009 11 26.50877 08 32 52.26 +21 15 20.0          17.5 R

F65

     007102   C2009 11 26.51275 08 32 52.19 +21 15 19.8          18.0 V

F65

     007102   C2009 11 26.51774 08 32 52.14 +21 15 19.4          18.1 V

F65

 

Images

 

Maurice Gavin

 

Hi - MP346 image [whilst awaiting Nova Eri to emerge from trees!]

 

regards

Maurice Gavin

 

 

Lightcurve photometry

 

Peter Birtwhistle

 

 

Occultations

 

Tim Haymes

 

I observed from nr Maidenhead, UK. No occultation – 2009 EG94.

The DV tape was copied to HD and compressed (DivX codec) using Virtual Dub. This file was analysed by LiMovie. The result indicates no event.

 

Best wishes,

 

Tim Haymes.

0d 48' 53" W

51d 30' 22" N

30cm F/4 with Watec 120N+ (25fps) + and Sony TRV22E DV cam.

 

ASTEROIDAL  OCCULTATION  -  REPORT FORM

1 DATE : 2009-11-27  2100 hrs

STAR : HIP 20789   =  Fl  72 Tauri
ASTEROID : (27666) 1978 VU6

2 OBSERVER:
Name: Tim V Haymes       Abbr:  TVH
Address: Hill Rise, Knowl Hill Common, Knowl Hill, RG10 9YD UK
E-mail: tvh.observatory@btinternet.com

3. OBSERVING STATION
Nearest city :  Maidenhead
Station     : Home
Latitude : N 51°  30’ 22.0”  Longitude: E 0°  48’ 52.7”  Altitude 75m
(Ordance Survey 1:2500 converted to Long/Lat. J Brit Astron Assoc V92 p198 (1982)

Single, OR Double or Multiple station (Specify observer's name) :
Single : Tim Haymes
                          +----------------------------------------------+

4. TIMING OF EVENTS     |  OCCULTATION RECORDED :  NEGATIVE  |

Start observation   20:48:00 UT

End observation    21:11:00 UT

Personal Equation Subtracted : PE=0

Event   Time(T.U.)  P. E.   Acc.
code    HHMMSS.ss            S.ss    SS.ss
D
R

Duration  33 minutes

5 TELESCOPE
Type   : Newtonian F/4
Aperture   : 30 cm
Focal length  : 1200mm
Mount  : Equatorial
Motor drive  : Yes

6 TIMING & RECORDING
Timekeeping : Video time stamp (continuous)
Time-signal Station : BT telephone and DCF77

Watec 120N+ (integration setting 1 = 25fps)
Digital Tape    (Sony TRV22E external input)
Analysis with Limovie


7 OBSERVING CONDITIONS
Atmospheric transparency   : Clear at first then through thin cloud.  Star recorded throughout.
Wind    : none
Star image stability  : poor
Temperature    : 5 °C

8 ADDITIONAL COMMENT
The star was found by offset from Aldebaran. Clear conditions at first but thin cloud moved over the star after 2100.
Limovie was unable to give a clear measurement between 2105 and 2108 due to dimming.
This position is about 500 miles North of the predicted track.
No occultation at the central time for this location (2100)

 

Chris Hills

 

Folks,

Same here at Cambridge. Clear sky, no occultation – 2009 EG94 - (7x50 binoculars).

Cheers,
Chris

 

Malcolm Jennings

 

ASTEROIDAL  OCCULTATION  -  REPORT FORM

 

+------------------------------+      +-----------------------------+

 

|            EAON              |      |           IOTA/ES           |

 

|                              |      |  INTERNATIONAL OCCULTATION  |

 

|     EUROPEAN  ASTEROIDAL     |      |     TIMING  ASSOCIATION     |

 

|     OCCULTATION NETWORK      |      |       EUROPEAN SECTION      |

 

+------------------------------+      +-----------------------------+

 

1 DATE : 2009 11 03

 

STAR : HIP 109074

 

ASTEROID : (31867) 2000 EG94

 

2 OBSERVER:

Name: Malcolm Jennings

Address: 106, Langdale Road, Thornton Heath, Surrey.  CR7 7PQ ,  UK

E-mail: malcolmjennings@btinternet.com

 

3. OBSERVING STATION

Nearest cities : London

Station: Thornton Heath

Latitude : N 51°  23’ 58.6”  Longitude: W 0°  06’ 41.3”  (WGS84) 

Altitude 40m

(position using averaged GPS, altitude using OS map, MSL datum)

 

Single, OR Double or Multiple station (Specify observer's name) : Single : Malcolm Jennings

                           

+----------------------------------------------+

 

4. TIMING OF EVENTS     |  OCCULTATION RECORDED :  NEGATIVE OBSERVATION

Type of event

Start observation   20:20:00 UT

 

End observation     20:40:00 UT

 

Personal Equation Subtracted :

 

Event   Time(T.U.) P. E.   Acc.

 

code    HHMMSS.ss  S.ss    SS.ss

 

D

 

R

 

  5 TELESCOPE

Type : Newtonian f4.3

Aperture :  305mm

Focal length : 1317mm

Mount : Equatorial

Motor drive : Yes

 

6 TIMING & RECORDING

Timekeeping : Video time stamp (continuous reception) Time-signal Station : MSF Anthorn UK

 

Mode of recording:                   Device of recording:

 

O  Stopwatch                              O  Visual

 

X  Digital recorder              X  Television   (Stellacam3)

 

O  Eye-ear-method                     O  Photometer

 

O  T-Recorder (Chart)                 O  Other (specify) :

 

7 OBSERVING CONDITIONS

Atmospheric transparency : Fair

Wind : Moderate

Star image stability :Fair

Temperature :  Not noted

 

8 ADDITIONAL COMMENTS

Camera set to 1/250 to avoid over exposing star. Recording checked 

frame by frame from 20:32:00-20:33:00 but could detect no obvious 

dimming for more than 1 frame. Also observed with the naked eye and 

no occultation seen.

 

Hazel McGee

 

ASTEROIDAL OCCULTATION - REPORT FORM

 

    +------------------------------+  +------------------------------+

    |            EAON              |  |            IOTA/ES           |

    |                              |  |  INTERNATIONAL OCCULTATION   |

    |     EUROPEAN  ASTEROIDAL     |  |      TIMING  ASSOCIATION     |

    |     OCCULTATION NETWORK      |  |       EUROPEAN SECTION       |

    +------------------------------+  +------------------------------+

 

1 DATE:  2009/11/03  STAR: HIP 109074 (alpha Aqr)   ASTEROID: 2000 EG94 N°: 31867

 

2 OBSERVER: Name: Hazel McGee        Abbr: HWM     Phone: --

            E-mail: hazelmcgee@btinternet.com

  Address: 'Starfield', Dedswell Drive, West Clandon, Guildford, Surrey, UK

 

3 OBSERVING STATION: Nearest city: Guildford

  Station:   Clandon

  Latitude   N 51d 15m 57.12s

  Longitude  W 00d 30m 27.72s

  Altitude:  57m

 

  Single, OR Double or Multiple station:   Single Station

 

                         +----------------------------------+

4 TIMING OF EVENTS:      |                                  |

                         |  OCCULTATION RECORDED: NEGATIVE  |

                         |                                  |

                         +----------------------------------+

  Type of event

  Start observation   Interrupt-start   Disappearance   Blink   Flash

  End observation     Jnterrupt-end     Reappearance    Other (specify)

 

  Event   Time (UT)    P.E.   Acc.  

  Code   HH MM SS.ss   S.ss   S.ss

 

    S  - 20 29 00 

    E  - 20 36 00

 

5 TELESCOPE: Type:  SCT

             Aperture:  356mm

             Magnification:  x137

             Mount:  ALT-AZ

             Motor drive:  YES

 

6 TIMING & RECORDING:

  Timekeeping:          Radio controlled clock + sports stopwatch

  Mode of recording:    Visual & audio

  Device of recording : Digital audio recorder

 

7 OBSERVING CONDITIONS:

  Atmospheric transparency:  Good, Full Moon

  Wind:  Moderate

  Temperature:  Chilly, ~5°C

  Star image stability:  Good, bright star

  Minor planet visible:  Not seen

 

8 ADDITIONAL COMMENTS:

  No occultation occurred at this location.

 

Chris Rowland

 

+--------------------------------+ +--------------------------------+

 

                   ASTEROID OCCULTATION - REPORT FORM

 

  +--------------------------------+ +--------------------------------+

 

                         EAON & IOTA-ES

 

                 EUROPEAN ASTEROIDAL OCCULTATION NETWORK

 

      INTERNATIONAL OCCULTATION TIMING ASSOCIATION EUROPEAN SECTION

 

  +--------------------------------+ +--------------------------------+

 

  1.DATE: 2009/11/03

    STAR: HIP 109074  (Alpha Aquarius)

    ASTEROID: (31867) 2000 EG94

 

  2.OBSERVER:

     Name: ROWLAND Chris

   E-mail: chris.rowland@dsl.pipex.com

 

  3.OBSERVING STATION:

   Nearest city: Amersham, Bucks UK

   Latitude: 51° 39' 35.5" N

   Longitude: 0° 39' 15.3" W

   Altitude: approx 90 m

   Single/Multiple: Single

 

  +--------------------------------------------------------------------+

 

  4.TIMING OF EVENTS:

   Occultation recorded: NEGATIVE

   Type of event:

   "S"tart observation; "I"nterrupt-"s"tart; "D"isappearance;

   "B"link; "F"lash; "E"nd observation; "I"nterrupt-"e"nd;

   "R"eappearance; "O"ther (specify)

 

   Personal Equation Substracted: No

   Event Time (UT)  P.E. Accuracy + Comments

   code: HH:MM:SS  .ss  S.ss

   -

   -S    20:29:02

   -

   -E    20:34:32

 

  5.TELESCOPE:

   Type: Schmidt - Cassegrain

   Aperture: 25 cm

   Mount: Equatorial

   Motor drive: Yes

   Webcam with a 0.63 reducer.

 

  6.TIMING & RECORDING:

   Mode of recording: Webcam recording at 20FPS

   Device of recording: Video recording to AVI file on laptop

 

  7.OBSERVING CONDITIONS:

   Atmospheric transparency: Good

   Wind: No

   Star image stability: Good

 

  8.ADDITIONAL COMMENTS:

   - This was at the Wycombe Astronomical Society observatory. The AVI

file was examined with Limovie and no indication of an occultation was seen.

 

Terry Platt

 

Hi All,

 

Just to confirm that I also observed in clear skies from Bracknell but did

not see any event – 2000 EG94 - (10x50 binoculars).

 

Regards,

Terry Platt

 

Project NeilBone (coordinated by Richard Miles)

 

2009 November 2

 

Dear All,

 

Whilst the Moon is near full, I have been working on our observations.  The

attached are the latest plots re. asteroids (150) Nuwa and (1130) Skuld, the

former being still work in progress with more data yet to be included.  We

have made excellent progress in just a short time.  The most remarkable

finding to date is the very strong non-linear brightening at PhA below 0.5

degrees.  (I still need to check the calibration for the PhA=0.83

datapoint - the others have been validated.)

 

I cannot recall seeing in the literature such a surge in brightness (0.17

mag or so) at very small phase angle so this is real pioneering stuff.  Such

effects have been measured in the laboratory.  In the case of (150), there

is a similar brightening in the last 0.5 deg but it looks to be much less

marked, attaining only about 0.07 mag.

 

Also of note are the attenuated points corresponding to Roger Dymock's

images of Oct 28/29 made with a 0.61-m Cassegrain telescope and V filter at

Sierra Stars Observatory.  These images have been checked and the

calibrations double-checked and the attenuation looks to be real.  For the

moment, we need to keep (1130) under close watch in the hope of detecting

further attenuations, which would be evidence of it being a binary system.

However, the likelihood of it being binary is very small given that

observations by Francois Colas in 2004 January found it exhibited a 0.45 mag

amplitude - binary asteroids tend to be spheroidal in shape and therefore

have low-amplitude lightcurves.  We shall see.  Please keep this speculation

to yourself as we need additional evidence before we can be sure of what is

happening.

 

Also, we now need to follow both objects during the next few weeks in order

to have a more accurate and continuous composite lightcurve for each - Good

luck with the weather.

 

Richard Miles

 

 

 

 

2009 November 4

 

Observations made today and yesterday have revealed that (1130) not only has

a very marked opposition effect but that it also has a steeper than usual

phase curve having a phase coefficient of about 0.057 mag/deg at about PhA=5

deg.  So the apparent attenuation reported earlier has now been ruled out as

a real effect, it having been an illusion created by the steep phase curve.

Attached are the latest plots.

 

Routine monitoring for both (150) and (1130) over the next few weeks as

mentioned in a previous message.

 

Richard Miles

 

 

2009 November 10

 

Dear Team Member,

 

Attached you will find plots illustrating the results we have obtained on

the Type Cb asteroid, (150) Nuwa.

 

The team has grown since my last communication to the group (sent Nov 2) and

we now number 15: I am very pleased to welcome Fiona Vincent from Scotland

and Alessandro Odasso from Italy, who are the latest to join.

 

Thanks too to all of the observers who have contributed (10 in all) - the

coverage we have managed on our first two targets, (150) Nuwa and (1130)

Skuld has exceeded my expectations by a long way.  We only need a few more

observations of these two objects as we are nearing completion on these.   I

suggest you only observe them in future if they have a good selection of

comparison stars in the field of view and it is a good clear night.

 

The current targets are as follows:

 

(384) Burgidala - We have observations down to PhA=0.17 deg and so now need

to follow it as it recedes from opposition.  It is a slow rotator so may

prove difficult.

(770) Bali - This is at opposition as I write - It did not reach a

particularly low PhA, only 0.3 deg, but we have started on it and it would

be worthwhile to take short time-series of images.  Low priority.

(138) Tolosa - This reaches a v.low PhA of 0.08 deg on Nov 15 03h and so is

the highest priority target.  Good luck.

(1423) Jose - This reaches an extremely low PhA of 0.02 deg on Nov 20 05h

and is therefore also a high-priority target.

 

To finish, here is a short summary of where we have reached with (150) Nuwa:

We have refined the rotation period for this object.  It was down in the

literature as 8.14 hours.  So far, our data show it is 8.134 +/-0.001 hours.

Also it was previously observed to have a lightcurve amplitude of 0.09 mag.

This apparation it is 0.14 mag.  The latest phase curve (attached) shows the

difference in magnitude from an assumed 0.035 mag/deg phase brightening.  It

is remarkable in that there is NO significant opposition surge where the

brightness increases anomalously in the last degree or two [unlike (1130)

Skuld !].  N.B. The plotted data does not exclude any points -one or two

look to be strange.  However, my next analysis will look to see whether

different points in the rotation of the object show different

light-scattering properties.  This is because the scatter in the phase curve

data looks to be too large to be explained by normal observational errors.

It is the wealth of data here which allows an in-depth look such as this.

Our phase angle coverage for this object exceeds anything which has been

published in the literature so we have done very well!

 

I shall let you have the results on (1130) Skuld shortly.

 

Best wishes to all and good luck with the weather,

Richard

 

2009 November 11

 

Dear Team,

 

Attached are the final results on the first two targets illustrated as

plots.

We can stop making any more observations of these two very different

asteroids.

Thank you to all 10 of you who contributed - I am proposing the results of

this groundbreaking work are written up as a short paper for the Journal,

the initial draft of which I shall circulate for input/comment.

 

I have been on a steep learning curve too and one conclusion is that we

should start observing target objects well ahead of opposition, say

beginning at phase angles of 12-15 degrees.  We can do this realistically by

using remotely-controlled / robotic telescopes to take images in the morning

sky.

 

Another learning point is that because we are striving for absolute

photometric accuracies of a few hundredths of a magnitude, it looks like it

won't be possible to work with unfiltered images/observations.  Only the V

or Green filter should be used.  I may revisit this later at some point.

 

As to future targets, the next is (121) Hermione which reaches opposition

(PhA=0.17 deg) on December 7/8 followed by (1645) Waterfield (PhA=0.06 deg)

on December 12.  I have booked the Faulkes Telescope South on Dec 12 to

coincide both with opposition and the BAA Christmas meeting at Burlington

House!  The two happen at virtually the same time.  If clear I am hoping we

can observe starting at 1400 UT so do get there early if you can.  I should

add that (1645) is named after Reggie Waterfield, a prominent BAA member who

specialised in comet observation.  The asteroid happens to have a rare Type

XDC classification so it is of special interest for that reason too.

 

As to observations in the bag, we have the following number of observing

runs completed:

 

(384) Burgidala - 18

(770) Bali - 15

(138) Tolosa - 26

(1423) Jose - 20

(121) Hermione - 4

(1645) Waterfield - 6

(7102) Neilbone - 1

 

We missed out on observing (770) at opposition but were successful with

(384), (138) and (1423), which we now need to follow as they recede from

opposition.

 

N.B. As a matter of policy, future targets will only be tackled if they come

to a PhA of 0.20 deg or less.  Note also that (7102) Neilbone is well before

opposition at the moment and so very faint (18th magnitude at PhA=13 deg)

and therefore can only be tackled with Faulkes.  It should come within range

of other scopes in January.

 

Comments welcome.

 

Clear Skies,

Richard

 

 

2009 November 27

 

Dear Observer,

 

The preliminary analysis of 15 observing runs on (384) Burdigala indicates

that it spins very slowly, probably having an axial rotational period of

about 16 days!  That would make it about the 14th slowest rotator known

amongst some 3000+ objects.

 

It is therefore important to solve its lightcurve, which appears to have an

amplitude of about 0.25 mag, otherwise we cannot derive a phase curve even

though we caught it at a phase angle of just 0.17 degrees.  Grateful if you

could take say 5 images with a V or Green filter per night as and when you

can.  The Moon will interfere with observation for the next 7 nights.

 

Good luck,

Richard

 

2009 December 8

 

Dear Observer,

 

As I write this, asteroid (121) Hermione is within a couple of hours of

reaching opposition.  We have had good coverage of this object thanks to

five observers and a wide distribution of telescopes including, so far, 7

different robotic scopes.   At present it is clear here in south-west

England so looks like we will have another success - this time down to PhA =

0.17 deg.

 

Attached is the rotational lightcurve of (384) Burdigala showing it rotates

once every 394 hours or so.  Since the Moon has begun to wane we have good

coverage as it has brightened.  All we need now are short snatches of images

over the next 10 days or so and we should be able to firm up on the rotation

period.  I make it the 14th slowest rotator known in the Solar System

(excluding the Sun and our Moon).  Not a bad find for the 3rd object on our

shopping list.  Well done everyone.

 

Finally we now need another push to observe (1645) Waterfield over the next

few days with it reaching PhA = 0.06 deg around midday on Saturday December

12.  We have the Faulkes Telescope South booked for Saturday 1400-1500 UT

and if clear in Australia we should secure images of these objects as well

as of the project's namesake, (7102) Neilbone, live during the BAA meeting

at Burlington House in Piccadilly.

 

Clear skies,

Richard

 

 

 

Index to observations received from ARPS members

Table of contents